Abdel M. A. Alsnayyan;Leo Kempel;Shanker Balasubramaniam
{"title":"流形谐波及其在计算电磁学中的应用","authors":"Abdel M. A. Alsnayyan;Leo Kempel;Shanker Balasubramaniam","doi":"10.1109/JMMCT.2022.3199612","DOIUrl":null,"url":null,"abstract":"The eigenfunctions of the Laplace-Beltrami operator (LBO), or manifold harmonic basis (MHB), have many applications in mathematical physics, differential geometry, machine learning, and topological data analysis. MHB allows us to associate a frequency spectrum to a function on a manifold, analogous to the Fourier decomposition. This insight can be used to build a framework for analysis. The purpose of this paper is to review and illustrate such possibilities for computational electromagnetics as well as chart a potential path forward. To this end, we introduce three features of MHB: (a) enrichment for analysis of multiply connected domains, (b) local enrichment (L-MHB) and (c) hierarchical MHB (H-MHB) for reuse of data from coarser to fine geometry discretizations. Several results highlighting the efficacy of these methods are presented.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold Harmonics and Their Application to Computational Electromagnetics\",\"authors\":\"Abdel M. A. Alsnayyan;Leo Kempel;Shanker Balasubramaniam\",\"doi\":\"10.1109/JMMCT.2022.3199612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The eigenfunctions of the Laplace-Beltrami operator (LBO), or manifold harmonic basis (MHB), have many applications in mathematical physics, differential geometry, machine learning, and topological data analysis. MHB allows us to associate a frequency spectrum to a function on a manifold, analogous to the Fourier decomposition. This insight can be used to build a framework for analysis. The purpose of this paper is to review and illustrate such possibilities for computational electromagnetics as well as chart a potential path forward. To this end, we introduce three features of MHB: (a) enrichment for analysis of multiply connected domains, (b) local enrichment (L-MHB) and (c) hierarchical MHB (H-MHB) for reuse of data from coarser to fine geometry discretizations. Several results highlighting the efficacy of these methods are presented.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9860054/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9860054/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Manifold Harmonics and Their Application to Computational Electromagnetics
The eigenfunctions of the Laplace-Beltrami operator (LBO), or manifold harmonic basis (MHB), have many applications in mathematical physics, differential geometry, machine learning, and topological data analysis. MHB allows us to associate a frequency spectrum to a function on a manifold, analogous to the Fourier decomposition. This insight can be used to build a framework for analysis. The purpose of this paper is to review and illustrate such possibilities for computational electromagnetics as well as chart a potential path forward. To this end, we introduce three features of MHB: (a) enrichment for analysis of multiply connected domains, (b) local enrichment (L-MHB) and (c) hierarchical MHB (H-MHB) for reuse of data from coarser to fine geometry discretizations. Several results highlighting the efficacy of these methods are presented.