{"title":"天体物理应用中无碰撞冲击的基本原理,2。相对论的冲击","authors":"A. M. Bykov, R. A. Treumann","doi":"10.1007/s00159-011-0042-8","DOIUrl":null,"url":null,"abstract":"<p>In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i)?pair and (ii)?electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i)?a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii)?the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios <i>σ</i>>10<sup>?3</sup>; (iii)?the sensitive dependence of particle dynamics on the upstream magnetic inclination angle <i>θ</i>\n <sub>\n <i>Bn</i>\n </sub>, where particles of <i>θ</i>\n <sub>\n <i>Bn</i>\n </sub>>34° cannot escape upstream, leading to the distinction between ‘subluminal’ and ‘superluminal’ shocks; (iv)?particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak ‘surfing it’ and thereby becoming accelerated by a kind of SDA; (v)?these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi)?recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii)?the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii)?if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix)?advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"19 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2011-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-011-0042-8","citationCount":"109","resultStr":"{\"title\":\"Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks\",\"authors\":\"A. M. Bykov, R. A. Treumann\",\"doi\":\"10.1007/s00159-011-0042-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i)?pair and (ii)?electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i)?a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii)?the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios <i>σ</i>>10<sup>?3</sup>; (iii)?the sensitive dependence of particle dynamics on the upstream magnetic inclination angle <i>θ</i>\\n <sub>\\n <i>Bn</i>\\n </sub>, where particles of <i>θ</i>\\n <sub>\\n <i>Bn</i>\\n </sub>>34° cannot escape upstream, leading to the distinction between ‘subluminal’ and ‘superluminal’ shocks; (iv)?particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak ‘surfing it’ and thereby becoming accelerated by a kind of SDA; (v)?these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi)?recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii)?the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii)?if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix)?advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.</p>\",\"PeriodicalId\":785,\"journal\":{\"name\":\"The Astronomy and Astrophysics Review\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":27.8000,\"publicationDate\":\"2011-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00159-011-0042-8\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astronomy and Astrophysics Review\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00159-011-0042-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-011-0042-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks
In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i)?pair and (ii)?electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i)?a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii)?the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios σ>10?3; (iii)?the sensitive dependence of particle dynamics on the upstream magnetic inclination angle θBn, where particles of θBn>34° cannot escape upstream, leading to the distinction between ‘subluminal’ and ‘superluminal’ shocks; (iv)?particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak ‘surfing it’ and thereby becoming accelerated by a kind of SDA; (v)?these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi)?recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii)?the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii)?if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix)?advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.