{"title":"基于学习的多功能肘关节外骨骼控制","authors":"Xiaofeng Xiong;Cao Danh Do;Poramate Manoonpong","doi":"10.1109/TIE.2021.3116572","DOIUrl":null,"url":null,"abstract":"In this article, we propose a learning-based model for multifunctional elbow exoskeleton control, i.e., assist- and resist-as-needed (AAN and RAN). The model consists of online iterative learning and impedance adaptation mechanisms for predictive and variable compliant joint control. The model was implemented on a lightweight (0.425 kg) and portable elbow exoskeleton (i.e., POW-EXO) worn by three subjects, respectively. The implementation relies only on internal pose (e.g., joint position) feedback, rather than physical compliant mechanisms (e.g., springs) and external sensors (e.g., electromyography or force), typically required by conventional exoskeletons and controllers. The proposed model provides a novel technique to achieve multifunctional exoskeleton control with minimal mechatronics and sensing. Interestingly, its RAN control and POW-EXO as a quantification means may reveal interactive (mechanical) impedance variance and invariance in human motor control.","PeriodicalId":13402,"journal":{"name":"IEEE Transactions on Industrial Electronics","volume":"69 9","pages":"9216-9224"},"PeriodicalIF":7.5000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning-Based Multifunctional Elbow Exoskeleton Control\",\"authors\":\"Xiaofeng Xiong;Cao Danh Do;Poramate Manoonpong\",\"doi\":\"10.1109/TIE.2021.3116572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a learning-based model for multifunctional elbow exoskeleton control, i.e., assist- and resist-as-needed (AAN and RAN). The model consists of online iterative learning and impedance adaptation mechanisms for predictive and variable compliant joint control. The model was implemented on a lightweight (0.425 kg) and portable elbow exoskeleton (i.e., POW-EXO) worn by three subjects, respectively. The implementation relies only on internal pose (e.g., joint position) feedback, rather than physical compliant mechanisms (e.g., springs) and external sensors (e.g., electromyography or force), typically required by conventional exoskeletons and controllers. The proposed model provides a novel technique to achieve multifunctional exoskeleton control with minimal mechatronics and sensing. Interestingly, its RAN control and POW-EXO as a quantification means may reveal interactive (mechanical) impedance variance and invariance in human motor control.\",\"PeriodicalId\":13402,\"journal\":{\"name\":\"IEEE Transactions on Industrial Electronics\",\"volume\":\"69 9\",\"pages\":\"9216-9224\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9559849/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9559849/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Learning-Based Multifunctional Elbow Exoskeleton Control
In this article, we propose a learning-based model for multifunctional elbow exoskeleton control, i.e., assist- and resist-as-needed (AAN and RAN). The model consists of online iterative learning and impedance adaptation mechanisms for predictive and variable compliant joint control. The model was implemented on a lightweight (0.425 kg) and portable elbow exoskeleton (i.e., POW-EXO) worn by three subjects, respectively. The implementation relies only on internal pose (e.g., joint position) feedback, rather than physical compliant mechanisms (e.g., springs) and external sensors (e.g., electromyography or force), typically required by conventional exoskeletons and controllers. The proposed model provides a novel technique to achieve multifunctional exoskeleton control with minimal mechatronics and sensing. Interestingly, its RAN control and POW-EXO as a quantification means may reveal interactive (mechanical) impedance variance and invariance in human motor control.
期刊介绍:
Journal Name: IEEE Transactions on Industrial Electronics
Publication Frequency: Monthly
Scope:
The scope of IEEE Transactions on Industrial Electronics encompasses the following areas:
Applications of electronics, controls, and communications in industrial and manufacturing systems and processes.
Power electronics and drive control techniques.
System control and signal processing.
Fault detection and diagnosis.
Power systems.
Instrumentation, measurement, and testing.
Modeling and simulation.
Motion control.
Robotics.
Sensors and actuators.
Implementation of neural networks, fuzzy logic, and artificial intelligence in industrial systems.
Factory automation.
Communication and computer networks.