求解图着色问题的多时振荡细胞神经网络

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Richelle L. Smith;Thomas H. Lee
{"title":"求解图着色问题的多时振荡细胞神经网络","authors":"Richelle L. Smith;Thomas H. Lee","doi":"10.1109/OJCAS.2023.3262204","DOIUrl":null,"url":null,"abstract":"This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"156-164"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10081435.pdf","citationCount":"1","resultStr":"{\"title\":\"Polychronous Oscillatory Cellular Neural Networks for Solving Graph Coloring Problems\",\"authors\":\"Richelle L. Smith;Thomas H. Lee\",\"doi\":\"10.1109/OJCAS.2023.3262204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":\"4 \",\"pages\":\"156-164\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784029/10019301/10081435.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10081435/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10081435/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于解决图着色问题的多同步振荡细胞神经网络。我们利用超谐波注入锁定下的局部连接振子网络,将Potts模型应用于四着色问题。基于Potts模型到注入锁定振子的映射,我们利用了除以4注入锁定下的振子。每个振荡器以多时方式编码四种可能的状态,其中稳态振荡器相位类似于多时神经元的时间锁定神经元放电模式。利用脉冲灵敏度函数(ISF)理论对振子的高阶注入锁定进行建模和优化。提出了一种同步振荡神经网络的CMOS电路设计,并演示了地图的着色,给出了仿真结果和设计指南。仿真结果与理论结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polychronous Oscillatory Cellular Neural Networks for Solving Graph Coloring Problems
This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信