PVT变化和阈值选择对RFCMOS放大器OBT和OBIST故障检测的影响

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hendrik P. Nel;Fortunato Carlos Dualibe;Tinus Stander
{"title":"PVT变化和阈值选择对RFCMOS放大器OBT和OBIST故障检测的影响","authors":"Hendrik P. Nel;Fortunato Carlos Dualibe;Tinus Stander","doi":"10.1109/OJCAS.2022.3232638","DOIUrl":null,"url":null,"abstract":"Oscillation-based testing (OBT) and Oscillation-based built-in self-testing (OBIST) circuits enable detection of catastrophic faults in analogue and RF circuits, but both are sensitive to process, voltage and temperature (PVT) variation. This paper investigates 15 OBT and OBIST feature extraction strategies, and four approaches to threshold selection, by calculating figure-of-merit (FOM) across PVT variation. This is done using a 2.4 GHz LNA in <inline-formula> <tex-math notation=\"LaTeX\">$0.35 \\mu \\mathrm{m}$ </tex-math></inline-formula> CMOS as DUT. Of the 15 feature extraction approaches, the OBT approaches are found more effective, with some benefit gained from switched-state detection. Of the four approaches to threshold selection (nominal-ranged static thresholds, extreme-range static thresholds, temperature dynamic thresholds, and simple noise-filtered tone detection), dynamic thresholds resulted in the highest average FoM of 0.919, with the best FoM of 0.952, with a corresponding probability of test escape <inline-formula> <tex-math notation=\"LaTeX\">$P\\left(T_E\\right)$ </tex-math></inline-formula> and yield loss <inline-formula> <tex-math notation=\"LaTeX\">$P\\left(Y_L\\right)$ </tex-math></inline-formula> of <inline-formula> <tex-math notation=\"LaTeX\">$5 \\cdot 10^{-2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$1.89 \\cdot 10^{-2}$ </tex-math></inline-formula> respectively but requires accurate temperature measurement. Extreme static threshold selection resulted in a comparable average FoM of 0.912, but with less susceptibility to process variation and without the need for temperature measurement. Binary detection of a noise-filtered oscillating tone is found the least complex approach, with an average FoM of 0.891.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10002329.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of PVT Variation and Threshold Selection on OBT and OBIST Fault Detection in RFCMOS Amplifiers\",\"authors\":\"Hendrik P. Nel;Fortunato Carlos Dualibe;Tinus Stander\",\"doi\":\"10.1109/OJCAS.2022.3232638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillation-based testing (OBT) and Oscillation-based built-in self-testing (OBIST) circuits enable detection of catastrophic faults in analogue and RF circuits, but both are sensitive to process, voltage and temperature (PVT) variation. This paper investigates 15 OBT and OBIST feature extraction strategies, and four approaches to threshold selection, by calculating figure-of-merit (FOM) across PVT variation. This is done using a 2.4 GHz LNA in <inline-formula> <tex-math notation=\\\"LaTeX\\\">$0.35 \\\\mu \\\\mathrm{m}$ </tex-math></inline-formula> CMOS as DUT. Of the 15 feature extraction approaches, the OBT approaches are found more effective, with some benefit gained from switched-state detection. Of the four approaches to threshold selection (nominal-ranged static thresholds, extreme-range static thresholds, temperature dynamic thresholds, and simple noise-filtered tone detection), dynamic thresholds resulted in the highest average FoM of 0.919, with the best FoM of 0.952, with a corresponding probability of test escape <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P\\\\left(T_E\\\\right)$ </tex-math></inline-formula> and yield loss <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P\\\\left(Y_L\\\\right)$ </tex-math></inline-formula> of <inline-formula> <tex-math notation=\\\"LaTeX\\\">$5 \\\\cdot 10^{-2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$1.89 \\\\cdot 10^{-2}$ </tex-math></inline-formula> respectively but requires accurate temperature measurement. Extreme static threshold selection resulted in a comparable average FoM of 0.912, but with less susceptibility to process variation and without the need for temperature measurement. Binary detection of a noise-filtered oscillating tone is found the least complex approach, with an average FoM of 0.891.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784029/10019301/10002329.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10002329/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10002329/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于振荡的测试(OBT)和基于振荡的内置自检(OBIST)电路能够检测模拟和射频电路中的灾难性故障,但两者都对过程、电压和温度(PVT)变化敏感。本文研究了15种OBT和OBIST特征提取策略,以及四种阈值选择方法,通过计算PVT变化的价值图(FOM)。这是使用$0.35 \mu \mathrm{m}$ CMOS中的2.4 GHz LNA作为DUT完成的。在15种特征提取方法中,OBT方法被发现更有效,并且从切换状态检测中获得了一些好处。在四种阈值选择方法(名义范围静态阈值、极端范围静态阈值、温度动态阈值和简单噪声滤波的色调检测)中,动态阈值的平均FoM最高为0.919,最佳FoM为0.952,相应的试验逃逸概率$P\left(T_E\right)$和产量损失$P\left(Y_L\right)$分别为$5 \cdot 10^{-2}$和$1.89 \cdot 10^{-2}$,但需要精确的温度测量。极端静态阈值选择导致平均FoM为0.912,但对工艺变化的敏感性较低,不需要测量温度。对噪声滤波后的振荡音调进行二值检测是最简单的方法,其平均FoM为0.891。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of PVT Variation and Threshold Selection on OBT and OBIST Fault Detection in RFCMOS Amplifiers
Oscillation-based testing (OBT) and Oscillation-based built-in self-testing (OBIST) circuits enable detection of catastrophic faults in analogue and RF circuits, but both are sensitive to process, voltage and temperature (PVT) variation. This paper investigates 15 OBT and OBIST feature extraction strategies, and four approaches to threshold selection, by calculating figure-of-merit (FOM) across PVT variation. This is done using a 2.4 GHz LNA in $0.35 \mu \mathrm{m}$ CMOS as DUT. Of the 15 feature extraction approaches, the OBT approaches are found more effective, with some benefit gained from switched-state detection. Of the four approaches to threshold selection (nominal-ranged static thresholds, extreme-range static thresholds, temperature dynamic thresholds, and simple noise-filtered tone detection), dynamic thresholds resulted in the highest average FoM of 0.919, with the best FoM of 0.952, with a corresponding probability of test escape $P\left(T_E\right)$ and yield loss $P\left(Y_L\right)$ of $5 \cdot 10^{-2}$ and $1.89 \cdot 10^{-2}$ respectively but requires accurate temperature measurement. Extreme static threshold selection resulted in a comparable average FoM of 0.912, but with less susceptibility to process variation and without the need for temperature measurement. Binary detection of a noise-filtered oscillating tone is found the least complex approach, with an average FoM of 0.891.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信