Shuyuan Shi , Xinran Wang , Yaru Zhao, Weisheng Zhao
{"title":"强自旋轨道耦合范德华材料及其异质结构在自旋电子中的应用研究进展","authors":"Shuyuan Shi , Xinran Wang , Yaru Zhao, Weisheng Zhao","doi":"10.1016/j.mtelec.2023.100060","DOIUrl":null,"url":null,"abstract":"<div><p>The growing need for miniaturization in semiconductor devices has led to an increasing interest in layered van der Waals (vdW) materials, which offer intriguing physics, atomically thin and smooth layers, excellent mechanical properties and board application prospects for developing future high-performance devices. This review provides a comprehensive discussion of recent progress of vdW materials and their heterostructures widely studied in spintronics. Firstly, the background of emerging vdW materials in spintronic research is presented. Next, the research progress of the vdW materials with strong spin-orbit coupling (SOC) is discussed, including topological insulators, transition-metal dichalcogenides, vdW ferromagnetic materials, and vdW antiferromagnetic materials. For each material type, the spin-related phenomena, recent development of device applications and material growth methods are discussed in detail. Finally, the review concludes by discussing the future challenges and research prospects of emerging large-SOC vdW materials and their heterostructures, with the goal of inspiring deeper investigations and advancing spintronic device innovations.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"6 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent progress in strong spin-orbit coupling van der Waals materials and their heterostructures for spintronic applications\",\"authors\":\"Shuyuan Shi , Xinran Wang , Yaru Zhao, Weisheng Zhao\",\"doi\":\"10.1016/j.mtelec.2023.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing need for miniaturization in semiconductor devices has led to an increasing interest in layered van der Waals (vdW) materials, which offer intriguing physics, atomically thin and smooth layers, excellent mechanical properties and board application prospects for developing future high-performance devices. This review provides a comprehensive discussion of recent progress of vdW materials and their heterostructures widely studied in spintronics. Firstly, the background of emerging vdW materials in spintronic research is presented. Next, the research progress of the vdW materials with strong spin-orbit coupling (SOC) is discussed, including topological insulators, transition-metal dichalcogenides, vdW ferromagnetic materials, and vdW antiferromagnetic materials. For each material type, the spin-related phenomena, recent development of device applications and material growth methods are discussed in detail. Finally, the review concludes by discussing the future challenges and research prospects of emerging large-SOC vdW materials and their heterostructures, with the goal of inspiring deeper investigations and advancing spintronic device innovations.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"6 \",\"pages\":\"Article 100060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949423000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent progress in strong spin-orbit coupling van der Waals materials and their heterostructures for spintronic applications
The growing need for miniaturization in semiconductor devices has led to an increasing interest in layered van der Waals (vdW) materials, which offer intriguing physics, atomically thin and smooth layers, excellent mechanical properties and board application prospects for developing future high-performance devices. This review provides a comprehensive discussion of recent progress of vdW materials and their heterostructures widely studied in spintronics. Firstly, the background of emerging vdW materials in spintronic research is presented. Next, the research progress of the vdW materials with strong spin-orbit coupling (SOC) is discussed, including topological insulators, transition-metal dichalcogenides, vdW ferromagnetic materials, and vdW antiferromagnetic materials. For each material type, the spin-related phenomena, recent development of device applications and material growth methods are discussed in detail. Finally, the review concludes by discussing the future challenges and research prospects of emerging large-SOC vdW materials and their heterostructures, with the goal of inspiring deeper investigations and advancing spintronic device innovations.