Yiqiu Tan , Jilu Li , Huining Xu , Zhiwei Li , Heru Wang
{"title":"冰雪路面防滑性能的机理、评价与评价综述","authors":"Yiqiu Tan , Jilu Li , Huining Xu , Zhiwei Li , Heru Wang","doi":"10.1016/j.jreng.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>The anti-skid performance of snowy and icy pavements is a popular research topic among road workers. Snow and ice are pollutants on a road surface. They significantly reduce the skid resistance of pavements, and thus, cause traffic accidents. Pertinent research progress on the skid resistance of snowy and icy pavements was reviewed and summarized in this work. The formation and classification of snowy and icy pavements were described on the basis of the state of snow and ice. The friction mechanisms between tires and snowy and icy pavements were revealed. Measurement methods and their applicability to the skid resistance of snowy and icy pavements were summarized. Factors that affect the skid resistance of pavements were discussed from the perspectives of pavement, environment, and vehicle. In addition, models of snowy and icy pavement resistance were classified into experience, mechanical, and numerical models. The advantages and disadvantages of these models were then compared and analyzed. Some suggestions regarding snowy and icy pavements were presented in accordance with the aforementioned information, including the development of efficient testing tools, the quantification of skid resistance under the coupling effects of multiple factors, the establishment of unified evaluation standards, and the development of more effective skid resistance models.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanisms, evaluation and estimation of anti-skid performance of snowy and icy pavement: A review\",\"authors\":\"Yiqiu Tan , Jilu Li , Huining Xu , Zhiwei Li , Heru Wang\",\"doi\":\"10.1016/j.jreng.2023.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The anti-skid performance of snowy and icy pavements is a popular research topic among road workers. Snow and ice are pollutants on a road surface. They significantly reduce the skid resistance of pavements, and thus, cause traffic accidents. Pertinent research progress on the skid resistance of snowy and icy pavements was reviewed and summarized in this work. The formation and classification of snowy and icy pavements were described on the basis of the state of snow and ice. The friction mechanisms between tires and snowy and icy pavements were revealed. Measurement methods and their applicability to the skid resistance of snowy and icy pavements were summarized. Factors that affect the skid resistance of pavements were discussed from the perspectives of pavement, environment, and vehicle. In addition, models of snowy and icy pavement resistance were classified into experience, mechanical, and numerical models. The advantages and disadvantages of these models were then compared and analyzed. Some suggestions regarding snowy and icy pavements were presented in accordance with the aforementioned information, including the development of efficient testing tools, the quantification of skid resistance under the coupling effects of multiple factors, the establishment of unified evaluation standards, and the development of more effective skid resistance models.</p></div>\",\"PeriodicalId\":100830,\"journal\":{\"name\":\"Journal of Road Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Road Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097049823000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049823000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mechanisms, evaluation and estimation of anti-skid performance of snowy and icy pavement: A review
The anti-skid performance of snowy and icy pavements is a popular research topic among road workers. Snow and ice are pollutants on a road surface. They significantly reduce the skid resistance of pavements, and thus, cause traffic accidents. Pertinent research progress on the skid resistance of snowy and icy pavements was reviewed and summarized in this work. The formation and classification of snowy and icy pavements were described on the basis of the state of snow and ice. The friction mechanisms between tires and snowy and icy pavements were revealed. Measurement methods and their applicability to the skid resistance of snowy and icy pavements were summarized. Factors that affect the skid resistance of pavements were discussed from the perspectives of pavement, environment, and vehicle. In addition, models of snowy and icy pavement resistance were classified into experience, mechanical, and numerical models. The advantages and disadvantages of these models were then compared and analyzed. Some suggestions regarding snowy and icy pavements were presented in accordance with the aforementioned information, including the development of efficient testing tools, the quantification of skid resistance under the coupling effects of multiple factors, the establishment of unified evaluation standards, and the development of more effective skid resistance models.