Shuai Yuan , Jinhui Wang , Lei Zhang , Shiyu Luan , Peipeng Jin
{"title":"长周期有序堆积对Mg-Al-Y合金单轴热压缩孪晶行为和力学性能的影响","authors":"Shuai Yuan , Jinhui Wang , Lei Zhang , Shiyu Luan , Peipeng Jin","doi":"10.1016/j.jmst.2022.09.041","DOIUrl":null,"url":null,"abstract":"<div><p>Two alloys with (T4-4h) and without (T4-8h) long-period stacking ordered (LPSO) phase were obtained by solution treatment of as-cast Mg-1Al-12Y alloy at 540 °C for 4 h and 8 h, respectively. The compressive tests (300–450 °C, <em>ε</em>=0.01s<sup>−1</sup>) showed that the strengthening effect of LPSO in T4-4h alloy gradually disappeared with temperature increase. In addition, the corresponding compression deformation behavior of the two alloys was also investigated by electron backscatter diffraction (EBSD). It was found that the twinning of the two alloys was dominated by {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>2} extension twins, and the large amount of lamellar LPSO in T4-4 h alloy inhibited the activation and growth of twins. The [0001] // compression direction (CD) texture formed after deformation is mostly attributed to the activation and growth of extension twins. By analyzing the activated twin variants, it was found that the activation of twin variants mainly depended on Schmid factor (SF). For twin variants with smaller SF, they may be activated due to local stress concentration. Based on the analysis results of in-grain misorientation axis (IGMA) and SF, the deformation mechanism of the alloys at elevated temperature is dominated by basal slip and non-basal slip. The stronger mechanical properties of T4-4h alloy than those of T4-8h are attributed to the obstruction of non-basal slip movement by LPSO.</p></div>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"142 ","pages":"Pages 152-166"},"PeriodicalIF":14.3000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effect of long-period ordered stacking on twinning behavior and mechanical properties of Mg-Al-Y alloy during uniaxial hot compression\",\"authors\":\"Shuai Yuan , Jinhui Wang , Lei Zhang , Shiyu Luan , Peipeng Jin\",\"doi\":\"10.1016/j.jmst.2022.09.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two alloys with (T4-4h) and without (T4-8h) long-period stacking ordered (LPSO) phase were obtained by solution treatment of as-cast Mg-1Al-12Y alloy at 540 °C for 4 h and 8 h, respectively. The compressive tests (300–450 °C, <em>ε</em>=0.01s<sup>−1</sup>) showed that the strengthening effect of LPSO in T4-4h alloy gradually disappeared with temperature increase. In addition, the corresponding compression deformation behavior of the two alloys was also investigated by electron backscatter diffraction (EBSD). It was found that the twinning of the two alloys was dominated by {10<span><math><mover><mn>1</mn><mo>¯</mo></mover></math></span>2} extension twins, and the large amount of lamellar LPSO in T4-4 h alloy inhibited the activation and growth of twins. The [0001] // compression direction (CD) texture formed after deformation is mostly attributed to the activation and growth of extension twins. By analyzing the activated twin variants, it was found that the activation of twin variants mainly depended on Schmid factor (SF). For twin variants with smaller SF, they may be activated due to local stress concentration. Based on the analysis results of in-grain misorientation axis (IGMA) and SF, the deformation mechanism of the alloys at elevated temperature is dominated by basal slip and non-basal slip. The stronger mechanical properties of T4-4h alloy than those of T4-8h are attributed to the obstruction of non-basal slip movement by LPSO.</p></div>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"142 \",\"pages\":\"Pages 152-166\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005030222007952\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005030222007952","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of long-period ordered stacking on twinning behavior and mechanical properties of Mg-Al-Y alloy during uniaxial hot compression
Two alloys with (T4-4h) and without (T4-8h) long-period stacking ordered (LPSO) phase were obtained by solution treatment of as-cast Mg-1Al-12Y alloy at 540 °C for 4 h and 8 h, respectively. The compressive tests (300–450 °C, ε=0.01s−1) showed that the strengthening effect of LPSO in T4-4h alloy gradually disappeared with temperature increase. In addition, the corresponding compression deformation behavior of the two alloys was also investigated by electron backscatter diffraction (EBSD). It was found that the twinning of the two alloys was dominated by {102} extension twins, and the large amount of lamellar LPSO in T4-4 h alloy inhibited the activation and growth of twins. The [0001] // compression direction (CD) texture formed after deformation is mostly attributed to the activation and growth of extension twins. By analyzing the activated twin variants, it was found that the activation of twin variants mainly depended on Schmid factor (SF). For twin variants with smaller SF, they may be activated due to local stress concentration. Based on the analysis results of in-grain misorientation axis (IGMA) and SF, the deformation mechanism of the alloys at elevated temperature is dominated by basal slip and non-basal slip. The stronger mechanical properties of T4-4h alloy than those of T4-8h are attributed to the obstruction of non-basal slip movement by LPSO.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.