{"title":"操作条件对准东煤CFB气化过程中钠释放转化的影响","authors":"Zi-jian YANG , Shuai GUO , Xiao-fang WANG","doi":"10.1016/S1872-5813(23)60348-2","DOIUrl":null,"url":null,"abstract":"<div><p>To provide some useful suggestions to the operation of circulating fluidized bed (CFB) gasifier, the effect of gasification temperature, residence time and agent on the release and transformation of sodium was studied by using a fixed bed reactor combined with Factsage software. The results indicated that gasification temperature was the significant factor to the release and transformation of sodium. For the promoting effect of sodium release, it was ascribed to the intense of sodium volatilization and competitive reaction between lime and meta-kaolin. Meanwhile, the high temperature promoted the formation of nepheline and slag. The threshold temperature of latter was near 950 °C. It was interesting to find that the release of sodium could be divided into two stages: coal pyrolysis and char gasification. In coal pyrolysis, part of organic and water-soluble sodium was released. The remainder either combined with char structure, or reacted with minerals. In char gasification, sodium, combined with char structure, was released along with char gasification. Due to the decrease of melting temperature and the formation of NaOH, steam showed a promoting effect on the sodium release. Oppositely, oxygen and nitrogen presented an inhibiting effect. The former was ascribed to the formation of Na<sub>2</sub>SO<sub>4</sub>, while the latter was caused by the chemical binding and physical wrapping effect of char.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1232-1239"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of operating conditions on release and transformation of sodium during CFB gasification of Zhundong coal\",\"authors\":\"Zi-jian YANG , Shuai GUO , Xiao-fang WANG\",\"doi\":\"10.1016/S1872-5813(23)60348-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To provide some useful suggestions to the operation of circulating fluidized bed (CFB) gasifier, the effect of gasification temperature, residence time and agent on the release and transformation of sodium was studied by using a fixed bed reactor combined with Factsage software. The results indicated that gasification temperature was the significant factor to the release and transformation of sodium. For the promoting effect of sodium release, it was ascribed to the intense of sodium volatilization and competitive reaction between lime and meta-kaolin. Meanwhile, the high temperature promoted the formation of nepheline and slag. The threshold temperature of latter was near 950 °C. It was interesting to find that the release of sodium could be divided into two stages: coal pyrolysis and char gasification. In coal pyrolysis, part of organic and water-soluble sodium was released. The remainder either combined with char structure, or reacted with minerals. In char gasification, sodium, combined with char structure, was released along with char gasification. Due to the decrease of melting temperature and the formation of NaOH, steam showed a promoting effect on the sodium release. Oppositely, oxygen and nitrogen presented an inhibiting effect. The former was ascribed to the formation of Na<sub>2</sub>SO<sub>4</sub>, while the latter was caused by the chemical binding and physical wrapping effect of char.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"51 9\",\"pages\":\"Pages 1232-1239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581323603482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Effect of operating conditions on release and transformation of sodium during CFB gasification of Zhundong coal
To provide some useful suggestions to the operation of circulating fluidized bed (CFB) gasifier, the effect of gasification temperature, residence time and agent on the release and transformation of sodium was studied by using a fixed bed reactor combined with Factsage software. The results indicated that gasification temperature was the significant factor to the release and transformation of sodium. For the promoting effect of sodium release, it was ascribed to the intense of sodium volatilization and competitive reaction between lime and meta-kaolin. Meanwhile, the high temperature promoted the formation of nepheline and slag. The threshold temperature of latter was near 950 °C. It was interesting to find that the release of sodium could be divided into two stages: coal pyrolysis and char gasification. In coal pyrolysis, part of organic and water-soluble sodium was released. The remainder either combined with char structure, or reacted with minerals. In char gasification, sodium, combined with char structure, was released along with char gasification. Due to the decrease of melting temperature and the formation of NaOH, steam showed a promoting effect on the sodium release. Oppositely, oxygen and nitrogen presented an inhibiting effect. The former was ascribed to the formation of Na2SO4, while the latter was caused by the chemical binding and physical wrapping effect of char.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.