使用磁共振成像对脑肿瘤分类进行微调的迁移学习架构

Md. Monirul Islam , Prema Barua , Moshiur Rahman , Tanvir Ahammed , Laboni Akter , Jia Uddin
{"title":"使用磁共振成像对脑肿瘤分类进行微调的迁移学习架构","authors":"Md. Monirul Islam ,&nbsp;Prema Barua ,&nbsp;Moshiur Rahman ,&nbsp;Tanvir Ahammed ,&nbsp;Laboni Akter ,&nbsp;Jia Uddin","doi":"10.1016/j.health.2023.100270","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting an accuracy of 99.60%.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"4 ","pages":"Article 100270"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging\",\"authors\":\"Md. Monirul Islam ,&nbsp;Prema Barua ,&nbsp;Moshiur Rahman ,&nbsp;Tanvir Ahammed ,&nbsp;Laboni Akter ,&nbsp;Jia Uddin\",\"doi\":\"10.1016/j.health.2023.100270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting an accuracy of 99.60%.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"4 \",\"pages\":\"Article 100270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能领域的深度学习方法处理大量数据,因此被用于脑肿瘤诊断。与计算机断层扫描(CT)、超声和x射线成像相比,磁共振成像(MRI)有效地用于基于机器视觉的脑肿瘤诊断。然而,由于大脑的复杂性,脑肿瘤的诊断一直具有挑战性。本研究旨在研究深度迁移学习架构在脑肿瘤诊断中的有效性。本文采用了四种迁移学习架构——InceptionV3、VGG19、DenseNet121和MobileNet。我们使用了来自figshare、SARTAJ和Br35H三个基准数据库的数据集来验证模型。这些数据库分为四类:脑垂体、无肿瘤、脑膜瘤和胶质瘤。应用图像增强使类平衡。实验结果表明,MobileNet的准确率达到99.60%,优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging

Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting an accuracy of 99.60%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信