Kähler-Einstein圆束的度量和阻塞平整度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peter Ebenfelt , Ming Xiao , Hang Xu
{"title":"Kähler-Einstein圆束的度量和阻塞平整度","authors":"Peter Ebenfelt ,&nbsp;Ming Xiao ,&nbsp;Hang Xu","doi":"10.1016/j.matpur.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential </span><span><math><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>u</mi></math></span> such that <em>u</em> is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth up to Σ. In general, <em>u</em> has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span><span> of negative Hermitian line bundles </span><span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span><span> over Kähler manifolds </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>. We prove that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> has constant Ricci eigenvalues, then <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of </span><span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> when <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is a Kähler surface <span><math><mo>(</mo><mi>dim</mi><mo>⁡</mo><mi>M</mi><mo>=</mo><mn>2</mn></math></span><span>) with constant scalar curvature.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kähler-Einstein metrics and obstruction flatness of circle bundles\",\"authors\":\"Peter Ebenfelt ,&nbsp;Ming Xiao ,&nbsp;Hang Xu\",\"doi\":\"10.1016/j.matpur.2023.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential </span><span><math><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>u</mi></math></span> such that <em>u</em> is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth up to Σ. In general, <em>u</em> has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span><span> of negative Hermitian line bundles </span><span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span><span> over Kähler manifolds </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>. We prove that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> has constant Ricci eigenvalues, then <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of </span><span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> when <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is a Kähler surface <span><math><mo>(</mo><mi>dim</mi><mo>⁡</mo><mi>M</mi><mo>=</mo><mn>2</mn></math></span><span>) with constant scalar curvature.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423000983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3

摘要

复流形中强伪凸超曲面Σ的阻塞平坦性是指在Σ的伪凸侧的任何(局部)Kähler-Einstein度规,完备到Σ,具有一个位能- log (u)使得u是C∞平滑到Σ。一般来说,u只有有限的平滑度,直到Σ。本文研究了Kähler流形(M,g)上由负厄米线束(L,h)的单位圆束S(L)产生的超曲面Σ的阻塞平坦性。证明了如果(M,g)具有常数Ricci特征值,则S(L)是阻塞平坦的。此外,如果所有这些特征值都严格小于1,且(M,g)是完备的,则我们证明相应的盘束允许一个完备的Kähler-Einstein度规。最后,我们给出了当(M,g)是一个具有常标量曲率的Kähler曲面(dim (M) =2)时S(L)的阻塞平坦性的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kähler-Einstein metrics and obstruction flatness of circle bundles

Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential logu such that u is C-smooth up to Σ. In general, u has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles S(L) of negative Hermitian line bundles (L,h) over Kähler manifolds (M,g). We prove that if (M,g) has constant Ricci eigenvalues, then S(L) is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and (M,g) is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of S(L) when (M,g) is a Kähler surface (dimM=2) with constant scalar curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信