{"title":"Kähler-Einstein圆束的度量和阻塞平整度","authors":"Peter Ebenfelt , Ming Xiao , Hang Xu","doi":"10.1016/j.matpur.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential </span><span><math><mo>−</mo><mi>log</mi><mo></mo><mi>u</mi></math></span> such that <em>u</em> is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth up to Σ. In general, <em>u</em> has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span><span> of negative Hermitian line bundles </span><span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span><span> over Kähler manifolds </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>. We prove that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> has constant Ricci eigenvalues, then <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of </span><span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> when <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is a Kähler surface <span><math><mo>(</mo><mi>dim</mi><mo></mo><mi>M</mi><mo>=</mo><mn>2</mn></math></span><span>) with constant scalar curvature.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kähler-Einstein metrics and obstruction flatness of circle bundles\",\"authors\":\"Peter Ebenfelt , Ming Xiao , Hang Xu\",\"doi\":\"10.1016/j.matpur.2023.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential </span><span><math><mo>−</mo><mi>log</mi><mo></mo><mi>u</mi></math></span> such that <em>u</em> is <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-smooth up to Σ. In general, <em>u</em> has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span><span> of negative Hermitian line bundles </span><span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>h</mi><mo>)</mo></math></span><span> over Kähler manifolds </span><span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span>. We prove that if <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> has constant Ricci eigenvalues, then <span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span><span> is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of </span><span><math><mi>S</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> when <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></math></span> is a Kähler surface <span><math><mo>(</mo><mi>dim</mi><mo></mo><mi>M</mi><mo>=</mo><mn>2</mn></math></span><span>) with constant scalar curvature.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423000983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Kähler-Einstein metrics and obstruction flatness of circle bundles
Obstruction flatness of a strongly pseudoconvex hypersurface Σ in a complex manifold refers to the property that any (local) Kähler-Einstein metric on the pseudoconvex side of Σ, complete up to Σ, has a potential such that u is -smooth up to Σ. In general, u has only a finite degree of smoothness up to Σ. In this paper, we study obstruction flatness of hypersurfaces Σ that arise as unit circle bundles of negative Hermitian line bundles over Kähler manifolds . We prove that if has constant Ricci eigenvalues, then is obstruction flat. If, in addition, all these eigenvalues are strictly less than one and is complete, then we show that the corresponding disk bundle admits a complete Kähler-Einstein metric. Finally, we give a necessary and sufficient condition for obstruction flatness of when is a Kähler surface ) with constant scalar curvature.