Anna Kh. Balci , Sun-Sig Byun , Lars Diening , Ho-Sik Lee
{"title":"退化权方程的全局极大正则性","authors":"Anna Kh. Balci , Sun-Sig Byun , Lars Diening , Ho-Sik Lee","doi":"10.1016/j.matpur.2023.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we are concerned with global maximal regularity estimates for elliptic equations<span> with degenerate weights. We consider both the linear case and the non-linear case. We show that higher integrability of the gradients can be obtained by imposing a local small oscillation condition on the weight and a local small Lipschitz condition on the boundary of the domain. Our results are new in the linear and non-linear case. We show by example that the relation between the exponent of higher integrability and the smallness parameters is sharp even in the linear or the unweighted case.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global maximal regularity for equations with degenerate weights\",\"authors\":\"Anna Kh. Balci , Sun-Sig Byun , Lars Diening , Ho-Sik Lee\",\"doi\":\"10.1016/j.matpur.2023.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we are concerned with global maximal regularity estimates for elliptic equations<span> with degenerate weights. We consider both the linear case and the non-linear case. We show that higher integrability of the gradients can be obtained by imposing a local small oscillation condition on the weight and a local small Lipschitz condition on the boundary of the domain. Our results are new in the linear and non-linear case. We show by example that the relation between the exponent of higher integrability and the smallness parameters is sharp even in the linear or the unweighted case.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Global maximal regularity for equations with degenerate weights
In this paper we are concerned with global maximal regularity estimates for elliptic equations with degenerate weights. We consider both the linear case and the non-linear case. We show that higher integrability of the gradients can be obtained by imposing a local small oscillation condition on the weight and a local small Lipschitz condition on the boundary of the domain. Our results are new in the linear and non-linear case. We show by example that the relation between the exponent of higher integrability and the smallness parameters is sharp even in the linear or the unweighted case.