范德华反铁磁体FePS3的价带电子结构

Jonah Elias Nitschke , Dorye L. Esteras , Michael Gutnikov , Karl Schiller , Samuel Mañas-Valero , Eugenio Coronado , Matija Stupar , Giovanni Zamborlini , Stefano Ponzoni , José J. Baldoví , Mirko Cinchetti
{"title":"范德华反铁磁体FePS3的价带电子结构","authors":"Jonah Elias Nitschke ,&nbsp;Dorye L. Esteras ,&nbsp;Michael Gutnikov ,&nbsp;Karl Schiller ,&nbsp;Samuel Mañas-Valero ,&nbsp;Eugenio Coronado ,&nbsp;Matija Stupar ,&nbsp;Giovanni Zamborlini ,&nbsp;Stefano Ponzoni ,&nbsp;José J. Baldoví ,&nbsp;Mirko Cinchetti","doi":"10.1016/j.mtelec.2023.100061","DOIUrl":null,"url":null,"abstract":"<div><p>Antiferromagnetic van der Waals materials have gained a lot of interest in recent years. They can be exfoliated down to the two-dimensional (2D) limit while potentially preserving intriguing properties of antiferromagnets, such as insensitivity to external magnetic fields and ultrafast spin dynamics in the THz range. The investigation of the electronic band structure of these materials is crucial to understand their behavior and thus to identify paths for future applications. Here, we investigate the valence band structure of one of the most studied 2D antiferromagnets –iron phosphorus trisulfide (FePS<sub>3</sub>)– using angle-resolved photoemission spectroscopy (ARPES) and compare our results with first-principles calculations based on Hubbard-corrected density functional theory (DFT+<em>U</em>). This allows us to identify the bands originating respectively from the Fe <em>3d</em>, the S <em>3p,</em> and the P <em>3p</em> orbitals and to describe their dispersion throughout the whole Brillouin zone. Our results represent an important step towards an accurate theoretical description of the electronic properties of transition metal phosphorus trisulfides, which is a pre-requisite for understanding the behavior of antiferromagnetic materials at the 2D limit.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"6 ","pages":"Article 100061"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Valence band electronic structure of the van der Waals antiferromagnet FePS3\",\"authors\":\"Jonah Elias Nitschke ,&nbsp;Dorye L. Esteras ,&nbsp;Michael Gutnikov ,&nbsp;Karl Schiller ,&nbsp;Samuel Mañas-Valero ,&nbsp;Eugenio Coronado ,&nbsp;Matija Stupar ,&nbsp;Giovanni Zamborlini ,&nbsp;Stefano Ponzoni ,&nbsp;José J. Baldoví ,&nbsp;Mirko Cinchetti\",\"doi\":\"10.1016/j.mtelec.2023.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antiferromagnetic van der Waals materials have gained a lot of interest in recent years. They can be exfoliated down to the two-dimensional (2D) limit while potentially preserving intriguing properties of antiferromagnets, such as insensitivity to external magnetic fields and ultrafast spin dynamics in the THz range. The investigation of the electronic band structure of these materials is crucial to understand their behavior and thus to identify paths for future applications. Here, we investigate the valence band structure of one of the most studied 2D antiferromagnets –iron phosphorus trisulfide (FePS<sub>3</sub>)– using angle-resolved photoemission spectroscopy (ARPES) and compare our results with first-principles calculations based on Hubbard-corrected density functional theory (DFT+<em>U</em>). This allows us to identify the bands originating respectively from the Fe <em>3d</em>, the S <em>3p,</em> and the P <em>3p</em> orbitals and to describe their dispersion throughout the whole Brillouin zone. Our results represent an important step towards an accurate theoretical description of the electronic properties of transition metal phosphorus trisulfides, which is a pre-requisite for understanding the behavior of antiferromagnetic materials at the 2D limit.</p></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"6 \",\"pages\":\"Article 100061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949423000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反铁磁范德华材料近年来引起了人们极大的兴趣。它们可以被剥离到二维(2D)极限,同时潜在地保留反铁磁体的有趣特性,例如对外部磁场不敏感和在太赫兹范围内的超快自旋动力学。研究这些材料的电子能带结构对于理解它们的行为,从而确定未来应用的路径至关重要。本文利用角分辨光谱学(ARPES)研究了研究最多的二维反铁磁体之一-三硫化铁磷(FePS3)的价带结构,并将结果与基于hubard校正密度泛函理论(DFT+U)的第一性原理计算结果进行了比较。这使我们能够分别识别来自Fe 3d、S 3p和P 3p轨道的能带,并描述它们在整个布里渊带中的色散。我们的结果代表了对过渡金属三硫化磷电子性质的准确理论描述的重要一步,这是理解反铁磁材料在二维极限下的行为的先决条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Valence band electronic structure of the van der Waals antiferromagnet FePS3

Antiferromagnetic van der Waals materials have gained a lot of interest in recent years. They can be exfoliated down to the two-dimensional (2D) limit while potentially preserving intriguing properties of antiferromagnets, such as insensitivity to external magnetic fields and ultrafast spin dynamics in the THz range. The investigation of the electronic band structure of these materials is crucial to understand their behavior and thus to identify paths for future applications. Here, we investigate the valence band structure of one of the most studied 2D antiferromagnets –iron phosphorus trisulfide (FePS3)– using angle-resolved photoemission spectroscopy (ARPES) and compare our results with first-principles calculations based on Hubbard-corrected density functional theory (DFT+U). This allows us to identify the bands originating respectively from the Fe 3d, the S 3p, and the P 3p orbitals and to describe their dispersion throughout the whole Brillouin zone. Our results represent an important step towards an accurate theoretical description of the electronic properties of transition metal phosphorus trisulfides, which is a pre-requisite for understanding the behavior of antiferromagnetic materials at the 2D limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信