三种木质素水热液化制备生物油的实验研究

Q3 Energy
Tian-hua YANG, Zheng LIU, Bing-shuo LI, Hai-jun ZHANG, He-yi WANG
{"title":"三种木质素水热液化制备生物油的实验研究","authors":"Tian-hua YANG,&nbsp;Zheng LIU,&nbsp;Bing-shuo LI,&nbsp;Hai-jun ZHANG,&nbsp;He-yi WANG","doi":"10.1016/S1872-5813(23)60345-7","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin is a natural and renewable resource with aromatic structure. It can be converted into bio-oil by hydrothermal liquefaction. Due to the complex structure of wood fiber, the structural characteristics and reactivity of different kinds of lignin are different. Therefore, three typical lignin (kraft lignin (KL), enzymatic hydrolysis lignin (EHL) and ethanol lignin (OL)) were selected as raw materials. Firstly, physical and chemical properties of the raw materials were analyzed. Secondly, effects of reaction conditions on characteristics of their hydrothermal liquefaction bio-oil were investigated. Among them, EHL and OL are guaiacyl units. OL has the highest content of carbon and hydrogen elements, and its higher heating value reaches 23.54 MJ/kg. The aromatic characteristics are more obvious, and the phenolic hydroxyl content is relatively high. KL is mainly syringyl unit with less methoxy and phenolic hydroxyl groups. The results of liquefaction experiment show that when the reaction temperature was 300 °C, yield and energy recovery rate of lignin bio-oil were the highest. The bio-oil yield ranked in the order of OL&gt;KL&gt;EHL. H/C ratio of bio-oil was concentrated within 1.0–1.4. Chemical composition of the three bio-oils was different. OL bio-oil contains 9.14% aromatic hydrocarbons, EHL bio-oil contains 41.34% phenolic species, and KL bio-oil has a higher acid content.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin\",\"authors\":\"Tian-hua YANG,&nbsp;Zheng LIU,&nbsp;Bing-shuo LI,&nbsp;Hai-jun ZHANG,&nbsp;He-yi WANG\",\"doi\":\"10.1016/S1872-5813(23)60345-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignin is a natural and renewable resource with aromatic structure. It can be converted into bio-oil by hydrothermal liquefaction. Due to the complex structure of wood fiber, the structural characteristics and reactivity of different kinds of lignin are different. Therefore, three typical lignin (kraft lignin (KL), enzymatic hydrolysis lignin (EHL) and ethanol lignin (OL)) were selected as raw materials. Firstly, physical and chemical properties of the raw materials were analyzed. Secondly, effects of reaction conditions on characteristics of their hydrothermal liquefaction bio-oil were investigated. Among them, EHL and OL are guaiacyl units. OL has the highest content of carbon and hydrogen elements, and its higher heating value reaches 23.54 MJ/kg. The aromatic characteristics are more obvious, and the phenolic hydroxyl content is relatively high. KL is mainly syringyl unit with less methoxy and phenolic hydroxyl groups. The results of liquefaction experiment show that when the reaction temperature was 300 °C, yield and energy recovery rate of lignin bio-oil were the highest. The bio-oil yield ranked in the order of OL&gt;KL&gt;EHL. H/C ratio of bio-oil was concentrated within 1.0–1.4. Chemical composition of the three bio-oils was different. OL bio-oil contains 9.14% aromatic hydrocarbons, EHL bio-oil contains 41.34% phenolic species, and KL bio-oil has a higher acid content.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581323603457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

木质素是一种具有芳香结构的天然可再生资源。它可以通过水热液化转化为生物油。由于木纤维结构复杂,不同种类木质素的结构特征和反应活性不同。因此,选择了三种典型的木质素(硫酸盐木质素(KL)、酶水解木质素(EHL)和乙醇木质素(OL))作为原料。首先,对原料的物理化学性能进行了分析。其次,考察了反应条件对其水热液化生物油特性的影响。其中,EHL和OL是愈创木酚单元。OL的碳元素和氢元素含量最高,其较高的热值达到23.54MJ/kg。芳香特性较为明显,酚羟基含量较高。KL主要是具有较少甲氧基和酚羟基的丁香基单元。液化实验结果表明,当反应温度为300°C时,木质素生物油的产率和能量回收率最高。生物油产量按OL>;KL>;EHL。生物油的H/C比集中在1.0–1.4之间。三种生物油的化学成分不同。OL生物油含有9.14%的芳烃,EHL生物油含有41.34%的酚类物质,KL生物油的酸含量较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on preparation of bio-oil by hydrothermal liquefaction of three kinds of lignin

Lignin is a natural and renewable resource with aromatic structure. It can be converted into bio-oil by hydrothermal liquefaction. Due to the complex structure of wood fiber, the structural characteristics and reactivity of different kinds of lignin are different. Therefore, three typical lignin (kraft lignin (KL), enzymatic hydrolysis lignin (EHL) and ethanol lignin (OL)) were selected as raw materials. Firstly, physical and chemical properties of the raw materials were analyzed. Secondly, effects of reaction conditions on characteristics of their hydrothermal liquefaction bio-oil were investigated. Among them, EHL and OL are guaiacyl units. OL has the highest content of carbon and hydrogen elements, and its higher heating value reaches 23.54 MJ/kg. The aromatic characteristics are more obvious, and the phenolic hydroxyl content is relatively high. KL is mainly syringyl unit with less methoxy and phenolic hydroxyl groups. The results of liquefaction experiment show that when the reaction temperature was 300 °C, yield and energy recovery rate of lignin bio-oil were the highest. The bio-oil yield ranked in the order of OL>KL>EHL. H/C ratio of bio-oil was concentrated within 1.0–1.4. Chemical composition of the three bio-oils was different. OL bio-oil contains 9.14% aromatic hydrocarbons, EHL bio-oil contains 41.34% phenolic species, and KL bio-oil has a higher acid content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信