{"title":"西太平洋烟草黑胫病生物防治剂蜡样芽孢杆菌Z4的全基因组序列","authors":"Shunhua Ji , Yin Tian , Jingjing Li , Guangxin Xu , Yongan Zhang , Shanyi Chen , Yiqiang Chen , Xixiang Tang","doi":"10.1016/j.margen.2023.101071","DOIUrl":null,"url":null,"abstract":"<div><p><em>Bacillus</em> species have been considered as promising biological control agents due to their excellent antimicrobial ability. <em>Bacillus cereus</em> strain Z4 was isolated from 2000 m deep sea sediments of the Western Pacific Ocean, which possesses significant antifungal activity against <em>Phytophthora nicotianae</em>, the pathogenic fungus of tobacco black shank disease. To reveal the underlying antifungal genetic mechanisms, here, we report the complete genomic sequence of the strain Z4. The genome has one circular chromosome of 5,664,309 bp with a G + C content of 35.31%, 109 tRNAs, and 43 rRNAs. Genomic analysis identified 10 gene clusters related to the biosynthesis of biocontrol active compounds, including bacillibactin, petrobactin, fengycin, and molybdenum cofactor. Meanwhile, 6 gene clusters were responsible for the biosynthesis of metabolites with unknown functions. Strain Z4 also contains a large number of genes encoding carbohydrate-active enzymes and secreted proteins, respectively. The whole genomic analysis of <em>Bacillus cereus</em> Z4 may provide a valuable reference for elucidating its biocontrol mechanism against tobacco black shank.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of Bacillus cereus Z4, a biocontrol agent against tobacco black shank, isolated from the Western Pacific Ocean\",\"authors\":\"Shunhua Ji , Yin Tian , Jingjing Li , Guangxin Xu , Yongan Zhang , Shanyi Chen , Yiqiang Chen , Xixiang Tang\",\"doi\":\"10.1016/j.margen.2023.101071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Bacillus</em> species have been considered as promising biological control agents due to their excellent antimicrobial ability. <em>Bacillus cereus</em> strain Z4 was isolated from 2000 m deep sea sediments of the Western Pacific Ocean, which possesses significant antifungal activity against <em>Phytophthora nicotianae</em>, the pathogenic fungus of tobacco black shank disease. To reveal the underlying antifungal genetic mechanisms, here, we report the complete genomic sequence of the strain Z4. The genome has one circular chromosome of 5,664,309 bp with a G + C content of 35.31%, 109 tRNAs, and 43 rRNAs. Genomic analysis identified 10 gene clusters related to the biosynthesis of biocontrol active compounds, including bacillibactin, petrobactin, fengycin, and molybdenum cofactor. Meanwhile, 6 gene clusters were responsible for the biosynthesis of metabolites with unknown functions. Strain Z4 also contains a large number of genes encoding carbohydrate-active enzymes and secreted proteins, respectively. The whole genomic analysis of <em>Bacillus cereus</em> Z4 may provide a valuable reference for elucidating its biocontrol mechanism against tobacco black shank.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778723000636\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000636","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Complete genome sequence of Bacillus cereus Z4, a biocontrol agent against tobacco black shank, isolated from the Western Pacific Ocean
Bacillus species have been considered as promising biological control agents due to their excellent antimicrobial ability. Bacillus cereus strain Z4 was isolated from 2000 m deep sea sediments of the Western Pacific Ocean, which possesses significant antifungal activity against Phytophthora nicotianae, the pathogenic fungus of tobacco black shank disease. To reveal the underlying antifungal genetic mechanisms, here, we report the complete genomic sequence of the strain Z4. The genome has one circular chromosome of 5,664,309 bp with a G + C content of 35.31%, 109 tRNAs, and 43 rRNAs. Genomic analysis identified 10 gene clusters related to the biosynthesis of biocontrol active compounds, including bacillibactin, petrobactin, fengycin, and molybdenum cofactor. Meanwhile, 6 gene clusters were responsible for the biosynthesis of metabolites with unknown functions. Strain Z4 also contains a large number of genes encoding carbohydrate-active enzymes and secreted proteins, respectively. The whole genomic analysis of Bacillus cereus Z4 may provide a valuable reference for elucidating its biocontrol mechanism against tobacco black shank.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.