超细Cu纳米团簇限制在共价有机框架内,通过协同策略有效地电还原CO2到CH4

IF 42.9 Q1 ELECTROCHEMISTRY
Mi Zhang , Meng Lu , Ming-Yi Yang , Jia-Peng Liao , Yu-Fei Liu , Hao-Jun Yan , Jia-Nan Chang , Tao-Yuan Yu , Shun-Li Li , Ya-Qian Lan
{"title":"超细Cu纳米团簇限制在共价有机框架内,通过协同策略有效地电还原CO2到CH4","authors":"Mi Zhang ,&nbsp;Meng Lu ,&nbsp;Ming-Yi Yang ,&nbsp;Jia-Peng Liao ,&nbsp;Yu-Fei Liu ,&nbsp;Hao-Jun Yan ,&nbsp;Jia-Nan Chang ,&nbsp;Tao-Yuan Yu ,&nbsp;Shun-Li Li ,&nbsp;Ya-Qian Lan","doi":"10.1016/j.esci.2023.100116","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) to high value-added chemicals by using renewable electricity presents a promising strategy to realize “carbon neutrality”. However, the ECR system is still limited by its low current density and poor CO<sub>2</sub> utilization efficiency. Herein, by using the confinement effect of covalent organic frameworks (COFs) to confine the <em>in-situ</em> growth of metal nanoclusters (NCs), we develop a series of Cu NCs encapsulated on COF catalysts (Cu-NC@COF) for ECR. Among them, Cu-NC@CuPc-COF as a gas diffusion electrode (GDE) achieves a maximum CO<sub>2</sub>-to-CH<sub>4</sub> Faradaic efficiency of 74 ​± ​3% (at −1.0 ​V vs. Reversible Hydrogen Electrode (RHE)) with a current density of 538 ​± ​31 ​mA ​cm<sup>−2</sup> (at −1.2 ​V vs. RHE) in a flow cell, making it one of the best among reported materials. More importantly, the current density is much higher than the relevant industrial current density (200 ​mA ​cm<sup>−2</sup>), indicating the potential for industrial application. This work opens up new possibilities for the design of ECR catalysts that utilize synergistic strategy.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 3","pages":"Article 100116"},"PeriodicalIF":42.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy\",\"authors\":\"Mi Zhang ,&nbsp;Meng Lu ,&nbsp;Ming-Yi Yang ,&nbsp;Jia-Peng Liao ,&nbsp;Yu-Fei Liu ,&nbsp;Hao-Jun Yan ,&nbsp;Jia-Nan Chang ,&nbsp;Tao-Yuan Yu ,&nbsp;Shun-Li Li ,&nbsp;Ya-Qian Lan\",\"doi\":\"10.1016/j.esci.2023.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) to high value-added chemicals by using renewable electricity presents a promising strategy to realize “carbon neutrality”. However, the ECR system is still limited by its low current density and poor CO<sub>2</sub> utilization efficiency. Herein, by using the confinement effect of covalent organic frameworks (COFs) to confine the <em>in-situ</em> growth of metal nanoclusters (NCs), we develop a series of Cu NCs encapsulated on COF catalysts (Cu-NC@COF) for ECR. Among them, Cu-NC@CuPc-COF as a gas diffusion electrode (GDE) achieves a maximum CO<sub>2</sub>-to-CH<sub>4</sub> Faradaic efficiency of 74 ​± ​3% (at −1.0 ​V vs. Reversible Hydrogen Electrode (RHE)) with a current density of 538 ​± ​31 ​mA ​cm<sup>−2</sup> (at −1.2 ​V vs. RHE) in a flow cell, making it one of the best among reported materials. More importantly, the current density is much higher than the relevant industrial current density (200 ​mA ​cm<sup>−2</sup>), indicating the potential for industrial application. This work opens up new possibilities for the design of ECR catalysts that utilize synergistic strategy.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 3\",\"pages\":\"Article 100116\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 3

摘要

利用可再生电力实现高附加值化学品的电催化CO2还原(ECR)是实现“碳中和”的一种很有前途的策略。然而,ECR系统仍然受到其低电流密度和低CO2利用效率的限制。本文利用共价有机框架(COFs)的限制效应来限制金属纳米团簇(NCs)的原位生长,我们开发了一系列封装在COFs催化剂上的Cu-NCs(Cu-NC@COF)ECR。其中,Cu-NC@CuPc-COF因为气体扩散电极(GDE)实现了74的最大CO2到CH4法拉第效率​±​3%(−1.0时​V vs.可逆氢电极(RHE)),电流密度为538​±​31​毫安​厘米−2(在−1.2​V vs.RHE),使其成为已报道材料中最好的材料之一。更重要的是,电流密度远高于相关的工业电流密度(200​毫安​cm−2),表明了工业应用的潜力。这项工作为利用协同策略设计ECR催化剂开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy

Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy

Electrocatalytic CO2 reduction (ECR) to high value-added chemicals by using renewable electricity presents a promising strategy to realize “carbon neutrality”. However, the ECR system is still limited by its low current density and poor CO2 utilization efficiency. Herein, by using the confinement effect of covalent organic frameworks (COFs) to confine the in-situ growth of metal nanoclusters (NCs), we develop a series of Cu NCs encapsulated on COF catalysts (Cu-NC@COF) for ECR. Among them, Cu-NC@CuPc-COF as a gas diffusion electrode (GDE) achieves a maximum CO2-to-CH4 Faradaic efficiency of 74 ​± ​3% (at −1.0 ​V vs. Reversible Hydrogen Electrode (RHE)) with a current density of 538 ​± ​31 ​mA ​cm−2 (at −1.2 ​V vs. RHE) in a flow cell, making it one of the best among reported materials. More importantly, the current density is much higher than the relevant industrial current density (200 ​mA ​cm−2), indicating the potential for industrial application. This work opens up new possibilities for the design of ECR catalysts that utilize synergistic strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信