解锁软插层超薄铁磁超晶格中的电荷掺杂效应

IF 42.9 Q1 ELECTROCHEMISTRY
Liang Hu , Bingzhang Yang , Zhipeng Hou , Yangfan Lu , Weitao Su , Lingwei Li
{"title":"解锁软插层超薄铁磁超晶格中的电荷掺杂效应","authors":"Liang Hu ,&nbsp;Bingzhang Yang ,&nbsp;Zhipeng Hou ,&nbsp;Yangfan Lu ,&nbsp;Weitao Su ,&nbsp;Lingwei Li","doi":"10.1016/j.esci.2023.100117","DOIUrl":null,"url":null,"abstract":"<div><p>The electrolyte-assisted exfoliation strategy is widely employed to synthesize ultrathin two-dimensional (2D) materials. Yet, spins in 2D magnets are susceptible to the electrolyte due to the underlying charge doping effect. Hence, it is crucial to understand and trace the doping process during the delamination of 2D magnets. Taking the prototype Fe<sub>3</sub>GeTe<sub>2</sub>, we utilized soft organic cations to exfoliate the bulk and obtain a freestanding organic–inorganic hybrid superlattice with a giant electron doping effect as high as 6.9 ​× ​10<sup>14</sup>/cm<sup>2</sup> (∼1.15 electrons per formula unit). A remarkable ferromagnetic transition exceeding 385 ​K was revealed in these superlattices, together with unique anisotropic saturation magnetization. The doping enhanced the in-plane electron–phonon coupling and thus optimized originally poor indirect double-exchange scenario for spin electrons. The emerging vertical magnetization shift phenomenon served to evaluate the uniformity of charge doping. The above findings provide a new perspective for understanding the role of parasitic charge in 2D magnetism.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":null,"pages":null},"PeriodicalIF":42.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice\",\"authors\":\"Liang Hu ,&nbsp;Bingzhang Yang ,&nbsp;Zhipeng Hou ,&nbsp;Yangfan Lu ,&nbsp;Weitao Su ,&nbsp;Lingwei Li\",\"doi\":\"10.1016/j.esci.2023.100117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrolyte-assisted exfoliation strategy is widely employed to synthesize ultrathin two-dimensional (2D) materials. Yet, spins in 2D magnets are susceptible to the electrolyte due to the underlying charge doping effect. Hence, it is crucial to understand and trace the doping process during the delamination of 2D magnets. Taking the prototype Fe<sub>3</sub>GeTe<sub>2</sub>, we utilized soft organic cations to exfoliate the bulk and obtain a freestanding organic–inorganic hybrid superlattice with a giant electron doping effect as high as 6.9 ​× ​10<sup>14</sup>/cm<sup>2</sup> (∼1.15 electrons per formula unit). A remarkable ferromagnetic transition exceeding 385 ​K was revealed in these superlattices, together with unique anisotropic saturation magnetization. The doping enhanced the in-plane electron–phonon coupling and thus optimized originally poor indirect double-exchange scenario for spin electrons. The emerging vertical magnetization shift phenomenon served to evaluate the uniformity of charge doping. The above findings provide a new perspective for understanding the role of parasitic charge in 2D magnetism.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电解质辅助剥离策略被广泛应用于超薄二维材料的合成。然而,由于潜在的电荷掺杂效应,二维磁体中的自旋易受电解质的影响。因此,了解和追踪二维磁体分层过程中的掺杂过程至关重要。以Fe3GeTe2为原型,我们利用软有机阳离子剥离体,获得了一个独立的有机-无机杂化超晶格,其巨大的电子掺杂效应高达6.9 × 1014/cm2(每个公式单位约1.15个电子)。在这些超晶格中发现了超过385 K的显著铁磁跃迁,并具有独特的各向异性饱和磁化。掺杂增强了平面内电子-声子耦合,从而优化了自旋电子原本较差的间接双交换情况。出现的垂直磁化位移现象用于评价电荷掺杂的均匀性。上述发现为理解寄生电荷在二维磁性中的作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice

Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice

The electrolyte-assisted exfoliation strategy is widely employed to synthesize ultrathin two-dimensional (2D) materials. Yet, spins in 2D magnets are susceptible to the electrolyte due to the underlying charge doping effect. Hence, it is crucial to understand and trace the doping process during the delamination of 2D magnets. Taking the prototype Fe3GeTe2, we utilized soft organic cations to exfoliate the bulk and obtain a freestanding organic–inorganic hybrid superlattice with a giant electron doping effect as high as 6.9 ​× ​1014/cm2 (∼1.15 electrons per formula unit). A remarkable ferromagnetic transition exceeding 385 ​K was revealed in these superlattices, together with unique anisotropic saturation magnetization. The doping enhanced the in-plane electron–phonon coupling and thus optimized originally poor indirect double-exchange scenario for spin electrons. The emerging vertical magnetization shift phenomenon served to evaluate the uniformity of charge doping. The above findings provide a new perspective for understanding the role of parasitic charge in 2D magnetism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信