纳米多孔Ni3Al/Ni异质结构下锂- co2电池金属间驱动的高可逆电催化

IF 42.9 Q1 ELECTROCHEMISTRY
Tianzhen Jian , Wenqing Ma , Caixia Xu , Hong Liu , John Wang
{"title":"纳米多孔Ni3Al/Ni异质结构下锂- co2电池金属间驱动的高可逆电催化","authors":"Tianzhen Jian ,&nbsp;Wenqing Ma ,&nbsp;Caixia Xu ,&nbsp;Hong Liu ,&nbsp;John Wang","doi":"10.1016/j.esci.2023.100114","DOIUrl":null,"url":null,"abstract":"<div><p>Li–CO<sub>2</sub> batteries, which integrate CO<sub>2</sub> utilization and electrochemical energy storage, offer the prospect of utilizing a greenhouse gas and providing an alternative to the well-established lithium-ion batteries. However, they still suffer from rather limited reversibility, low energy efficiency, and sluggish CO<sub>2</sub> redox reaction kinetics. To address these key issues, a nanoporous Ni<sub>3</sub>Al intermetallic/Ni heterojunction (NP–Ni<sub>3</sub>Al/Ni) is purposely engineered here via an alloying–etching protocol, whereby the unique interactions between Al and Ni in Ni<sub>3</sub>Al endow NP-Ni<sub>3</sub>Al/Ni with optimum reactant/product adsorption and thus unique catalytic performance for the CO<sub>2</sub> redox reaction. Furthermore, the nanoporous spongy structure benefits mass transport as well as discharge product storage and enables a rich multiphase reaction interface. <em>In situ</em> Raman studies and theoretical simulations reveal that both CO<sub>2</sub> reduction and the co-decomposition of Li<sub>2</sub>CO<sub>3</sub> and C are distinctly promoted by NP-Ni<sub>3</sub>Al/Ni, thereby greatly improving catalytic activity and stability. NP-Ni<sub>3</sub>Al/Ni offers promising application potential in Li–CO<sub>2</sub> batteries, with its scalable fabrication, low production cost, and superior catalytic performance.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 3","pages":"Article 100114"},"PeriodicalIF":42.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure\",\"authors\":\"Tianzhen Jian ,&nbsp;Wenqing Ma ,&nbsp;Caixia Xu ,&nbsp;Hong Liu ,&nbsp;John Wang\",\"doi\":\"10.1016/j.esci.2023.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Li–CO<sub>2</sub> batteries, which integrate CO<sub>2</sub> utilization and electrochemical energy storage, offer the prospect of utilizing a greenhouse gas and providing an alternative to the well-established lithium-ion batteries. However, they still suffer from rather limited reversibility, low energy efficiency, and sluggish CO<sub>2</sub> redox reaction kinetics. To address these key issues, a nanoporous Ni<sub>3</sub>Al intermetallic/Ni heterojunction (NP–Ni<sub>3</sub>Al/Ni) is purposely engineered here via an alloying–etching protocol, whereby the unique interactions between Al and Ni in Ni<sub>3</sub>Al endow NP-Ni<sub>3</sub>Al/Ni with optimum reactant/product adsorption and thus unique catalytic performance for the CO<sub>2</sub> redox reaction. Furthermore, the nanoporous spongy structure benefits mass transport as well as discharge product storage and enables a rich multiphase reaction interface. <em>In situ</em> Raman studies and theoretical simulations reveal that both CO<sub>2</sub> reduction and the co-decomposition of Li<sub>2</sub>CO<sub>3</sub> and C are distinctly promoted by NP-Ni<sub>3</sub>Al/Ni, thereby greatly improving catalytic activity and stability. NP-Ni<sub>3</sub>Al/Ni offers promising application potential in Li–CO<sub>2</sub> batteries, with its scalable fabrication, low production cost, and superior catalytic performance.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"3 3\",\"pages\":\"Article 100114\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 8

摘要

锂-二氧化碳电池集二氧化碳利用和电化学储能于一体,有望利用温室气体,为成熟的锂离子电池提供替代品。然而,它们仍然受到相当有限的可逆性、低能量效率和缓慢的CO2氧化还原反应动力学的影响。为了解决这些关键问题,本文通过合金化-蚀刻协议专门设计了纳米多孔Ni3Al金属间/Ni异质结(NP–Ni3Al/Ni),从而使Ni3Al中Al和Ni之间的独特相互作用赋予NP-Ni3Al/Ni最佳的反应物/产物吸附,从而对CO2氧化还原反应具有独特的催化性能。此外,纳米多孔海绵状结构有利于质量传输和放电产物存储,并实现丰富的多相反应界面。原位拉曼光谱研究和理论模拟表明,NP-Ni3Al/Ni明显促进了CO2的还原以及Li2CO3和C的共分解,从而大大提高了催化活性和稳定性。NP-Ni3Al/Ni具有可扩展的制造、低生产成本和优异的催化性能,在锂-二氧化碳电池中具有很好的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure

Intermetallic-driven highly reversible electrocatalysis in Li–CO2 battery over nanoporous Ni3Al/Ni heterostructure

Li–CO2 batteries, which integrate CO2 utilization and electrochemical energy storage, offer the prospect of utilizing a greenhouse gas and providing an alternative to the well-established lithium-ion batteries. However, they still suffer from rather limited reversibility, low energy efficiency, and sluggish CO2 redox reaction kinetics. To address these key issues, a nanoporous Ni3Al intermetallic/Ni heterojunction (NP–Ni3Al/Ni) is purposely engineered here via an alloying–etching protocol, whereby the unique interactions between Al and Ni in Ni3Al endow NP-Ni3Al/Ni with optimum reactant/product adsorption and thus unique catalytic performance for the CO2 redox reaction. Furthermore, the nanoporous spongy structure benefits mass transport as well as discharge product storage and enables a rich multiphase reaction interface. In situ Raman studies and theoretical simulations reveal that both CO2 reduction and the co-decomposition of Li2CO3 and C are distinctly promoted by NP-Ni3Al/Ni, thereby greatly improving catalytic activity and stability. NP-Ni3Al/Ni offers promising application potential in Li–CO2 batteries, with its scalable fabrication, low production cost, and superior catalytic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信