{"title":"添加Gd对ti基V, Nb, Ta合金超导性能的影响","authors":"SK Ramjan , L.S. Sharath Chandra , Rashmi Singh , M.K. Chattopadhyay","doi":"10.1016/j.supcon.2023.100048","DOIUrl":null,"url":null,"abstract":"<div><p>The critical current density (<span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) of the body centered cubic (<em>bcc</em>) V<sub>0.6</sub>Ti<sub>0.4</sub> alloy enhances significantly after the addition of rare earth Gd as the latter is immiscible in the matrix [S. Paul, et.al, IEEE Trans. Appl. Supercond. <strong>31</strong>, 5 (2021)]. Very low solubility of Gd in other <em>bcc</em> elements like Ta and Nb is also well known [Jr. KA Gschneidner in Prog Sci Technol Rare Earths, vol. 1, pp. 222–258, 1964 <span><math><mrow><mi>&</mi></mrow></math></span> M Neuberger, et.al in Handbook of Electronic Materials, Vol 4, 1972]. We use these facts to find the effect of adding 1 at.% Gd into the Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub> alloys on the superconducting properties e.g., the transition temperature (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>), <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, flux pinning force density (<span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>) and the microstructure. In spite of Gd being ferromagnetic, the <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> in these alloys change only marginally (increase by 0.3 K in Ta<sub>0.4</sub>Ti<sub>0.6</sub> and decrease by 0.15 K in Nb<sub>0.6</sub>Ti<sub>0.4</sub> after Gd addition. The <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> (<span><math><mrow><mi>H</mi><mo>=</mo><mn>1</mn></mrow></math></span> T, <em>T</em> = 4 K) increases by 5 and 1.5 times respectively in the Gd containing Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub> alloys, which is quite small as compared to the increase observed in the V<sub>0.6</sub>Ti<sub>0.4</sub> (20 times) system. With Gd addition, the grain size reduces approximately by 65% and 10% respectively in Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub>. Our analysis indicates that grain boundaries are the major flux line pinning centres in these alloys and the role of Gd in increasing the <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> depends on the effectiveness of Gd in reducing the grain size. The grain boundary density depends strongly on the distribution of Gd precipitates, which is quite different from each other for two alloy systems under study. Moreover, our results suggest that the addition of Gd to commercial Nb-Ti (Nb<sub>0.37</sub>Ti<sub>0.63</sub>) alloy is a new promising route for achieving higher <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> values.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"6 ","pages":"Article 100048"},"PeriodicalIF":5.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Gd addition on the superconducting properties of Ti-based V, Nb, Ta alloys\",\"authors\":\"SK Ramjan , L.S. Sharath Chandra , Rashmi Singh , M.K. Chattopadhyay\",\"doi\":\"10.1016/j.supcon.2023.100048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The critical current density (<span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) of the body centered cubic (<em>bcc</em>) V<sub>0.6</sub>Ti<sub>0.4</sub> alloy enhances significantly after the addition of rare earth Gd as the latter is immiscible in the matrix [S. Paul, et.al, IEEE Trans. Appl. Supercond. <strong>31</strong>, 5 (2021)]. Very low solubility of Gd in other <em>bcc</em> elements like Ta and Nb is also well known [Jr. KA Gschneidner in Prog Sci Technol Rare Earths, vol. 1, pp. 222–258, 1964 <span><math><mrow><mi>&</mi></mrow></math></span> M Neuberger, et.al in Handbook of Electronic Materials, Vol 4, 1972]. We use these facts to find the effect of adding 1 at.% Gd into the Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub> alloys on the superconducting properties e.g., the transition temperature (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>), <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, flux pinning force density (<span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span>) and the microstructure. In spite of Gd being ferromagnetic, the <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> in these alloys change only marginally (increase by 0.3 K in Ta<sub>0.4</sub>Ti<sub>0.6</sub> and decrease by 0.15 K in Nb<sub>0.6</sub>Ti<sub>0.4</sub> after Gd addition. The <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> (<span><math><mrow><mi>H</mi><mo>=</mo><mn>1</mn></mrow></math></span> T, <em>T</em> = 4 K) increases by 5 and 1.5 times respectively in the Gd containing Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub> alloys, which is quite small as compared to the increase observed in the V<sub>0.6</sub>Ti<sub>0.4</sub> (20 times) system. With Gd addition, the grain size reduces approximately by 65% and 10% respectively in Nb<sub>0.6</sub>Ti<sub>0.4</sub> and Ta<sub>0.4</sub>Ti<sub>0.6</sub>. Our analysis indicates that grain boundaries are the major flux line pinning centres in these alloys and the role of Gd in increasing the <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> depends on the effectiveness of Gd in reducing the grain size. The grain boundary density depends strongly on the distribution of Gd precipitates, which is quite different from each other for two alloy systems under study. Moreover, our results suggest that the addition of Gd to commercial Nb-Ti (Nb<sub>0.37</sub>Ti<sub>0.63</sub>) alloy is a new promising route for achieving higher <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> values.</p></div>\",\"PeriodicalId\":101185,\"journal\":{\"name\":\"Superconductivity\",\"volume\":\"6 \",\"pages\":\"Article 100048\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772830723000133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830723000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
摘要
添加稀土Gd后,体心立方(bcc) V0.6Ti0.4合金的临界电流密度(Jc)显著提高,因为稀土Gd在基体中不具有混相性[S]。Paul等人,IEEE译。达成。[j].山东大学学报(自然科学版),2014(5)。Gd在Ta和Nb等其他bcc元素中的溶解度也很低[Jr. KA Gschneidner,《稀土科学技术》,vol. 1, pp. 222-258, 1964 &M Neuberger等人,《电子材料手册》,Vol 4, 1972]。我们用这些事实来求加1 at的效果。添加% Gd对Nb0.6Ti0.4和Ta0.4Ti0.6合金的超导性能,如转变温度(Tc)、熔剂钉扎力密度(Fp)和显微组织的影响。尽管Gd是铁磁性的,但在加入Gd后,这些合金的Tc变化很小(Ta0.4Ti0.6增加0.3 K, Nb0.6Ti0.4减少0.15 K)。含Gd的Nb0.6Ti0.4和Ta0.4Ti0.6合金的Jc (H=1 T, T = 4 K)分别提高了5倍和1.5倍,与V0.6Ti0.4体系的Jc(20倍)相比,Jc (H=1 T, T = 4 K)的提高幅度很小。添加Gd后,Nb0.6Ti0.4和Ta0.4Ti0.6的晶粒尺寸分别减小了约65%和10%。我们的分析表明,晶界是这些合金中主要的通量线钉住中心,Gd增加Jc的作用取决于Gd减小晶粒尺寸的有效性。晶界密度很大程度上取决于Gd析出相的分布,两种合金体系的Gd析出相分布差异较大。此外,我们的研究结果表明,在商品Nb-Ti (Nb0.37Ti0.63)合金中添加Gd是获得更高Jc值的新途径。
Effect of Gd addition on the superconducting properties of Ti-based V, Nb, Ta alloys
The critical current density () of the body centered cubic (bcc) V0.6Ti0.4 alloy enhances significantly after the addition of rare earth Gd as the latter is immiscible in the matrix [S. Paul, et.al, IEEE Trans. Appl. Supercond. 31, 5 (2021)]. Very low solubility of Gd in other bcc elements like Ta and Nb is also well known [Jr. KA Gschneidner in Prog Sci Technol Rare Earths, vol. 1, pp. 222–258, 1964 M Neuberger, et.al in Handbook of Electronic Materials, Vol 4, 1972]. We use these facts to find the effect of adding 1 at.% Gd into the Nb0.6Ti0.4 and Ta0.4Ti0.6 alloys on the superconducting properties e.g., the transition temperature (), , flux pinning force density () and the microstructure. In spite of Gd being ferromagnetic, the in these alloys change only marginally (increase by 0.3 K in Ta0.4Ti0.6 and decrease by 0.15 K in Nb0.6Ti0.4 after Gd addition. The ( T, T = 4 K) increases by 5 and 1.5 times respectively in the Gd containing Nb0.6Ti0.4 and Ta0.4Ti0.6 alloys, which is quite small as compared to the increase observed in the V0.6Ti0.4 (20 times) system. With Gd addition, the grain size reduces approximately by 65% and 10% respectively in Nb0.6Ti0.4 and Ta0.4Ti0.6. Our analysis indicates that grain boundaries are the major flux line pinning centres in these alloys and the role of Gd in increasing the depends on the effectiveness of Gd in reducing the grain size. The grain boundary density depends strongly on the distribution of Gd precipitates, which is quite different from each other for two alloy systems under study. Moreover, our results suggest that the addition of Gd to commercial Nb-Ti (Nb0.37Ti0.63) alloy is a new promising route for achieving higher values.