{"title":"一种考虑鞍座旋转的悬索桥锚跨张力计算方法","authors":"Xuejin Huo , Jia Chen , Dongxu Wang , Li Zhu","doi":"10.1016/j.hspr.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports a method for strand tension in anchor spans considering rotation. A kind of co-moved coordinate system, a saddle local coordinate system, was set up. This system implemented the rotation of the splay saddle through the rotation of the coordinate system, and all calculations proceeded in this coordinate system. Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface, the anchorage point coordinates of strands were transformed to the local saddle coordinate system. There was a two-layer iteration adopted in the calculation. In the inner iteration, the cable force at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. In the outer iteration, the vertical tangential angle at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. The method carried out the rotation of the splay saddle and anchor surface and was simple, convenient and without approximation. The effect of rotation was considered precisely; it showed stability during the process of two-layer iteration, powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge, the world's first kilometer-level combined highway and railway suspension bridge.</p></div>","PeriodicalId":100607,"journal":{"name":"High-speed Railway","volume":"1 1","pages":"Pages 56-62"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method for calculating strand tension in the anchor span of a suspension bridge considering the rotation of a splay saddle\",\"authors\":\"Xuejin Huo , Jia Chen , Dongxu Wang , Li Zhu\",\"doi\":\"10.1016/j.hspr.2022.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports a method for strand tension in anchor spans considering rotation. A kind of co-moved coordinate system, a saddle local coordinate system, was set up. This system implemented the rotation of the splay saddle through the rotation of the coordinate system, and all calculations proceeded in this coordinate system. Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface, the anchorage point coordinates of strands were transformed to the local saddle coordinate system. There was a two-layer iteration adopted in the calculation. In the inner iteration, the cable force at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. In the outer iteration, the vertical tangential angle at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. The method carried out the rotation of the splay saddle and anchor surface and was simple, convenient and without approximation. The effect of rotation was considered precisely; it showed stability during the process of two-layer iteration, powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge, the world's first kilometer-level combined highway and railway suspension bridge.</p></div>\",\"PeriodicalId\":100607,\"journal\":{\"name\":\"High-speed Railway\",\"volume\":\"1 1\",\"pages\":\"Pages 56-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-speed Railway\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949867822000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-speed Railway","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949867822000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method for calculating strand tension in the anchor span of a suspension bridge considering the rotation of a splay saddle
This paper reports a method for strand tension in anchor spans considering rotation. A kind of co-moved coordinate system, a saddle local coordinate system, was set up. This system implemented the rotation of the splay saddle through the rotation of the coordinate system, and all calculations proceeded in this coordinate system. Considering the rotation of the anchoring surface by the rotation of the local coordinate system of the anchoring surface, the anchorage point coordinates of strands were transformed to the local saddle coordinate system. There was a two-layer iteration adopted in the calculation. In the inner iteration, the cable force at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. In the outer iteration, the vertical tangential angle at the end of the vertical bend was taken as the variable, and the ordinate of the anchorage point was taken as the target value. The method carried out the rotation of the splay saddle and anchor surface and was simple, convenient and without approximation. The effect of rotation was considered precisely; it showed stability during the process of two-layer iteration, powerful adaptation and higher efficiency and had been successfully applied in the construction control of the Wufengshan Yangtze River Bridge, the world's first kilometer-level combined highway and railway suspension bridge.