{"title":"土壤-轮胎/农具相互作用数值模拟研究进展","authors":"Dhruvin Jasoliya , Alexandrina Untaroiu , Costin Untaroiu","doi":"10.1016/j.jterra.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The study of deformable soils is one of the key factors in determining the tire, vehicle and/or agricultural tool design parameters. This literature review provides a brief overview of soil classification, soil testing, soil constitutive models, and numerical approaches utilized to model soil-tire/tool interaction. In the past, empirical, semi-empirical, and analytical soil models were used in these studies. However, some limitations occurred in terms of characterization of soil-tire/tool interaction in detail due to a large number of variables such as cohesion, moisture content, etc. In the last few decades, the finite element (FE) method was used with different formulations such as Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian to simulate the soil-tire/tool interaction. Recently, particle-based methods based on continuum mechanics and discrete mechanics started to be employed and showed good capability in terms of modeling of soil deformation and separation. Overall, this literature review provides simulation researchers insights into soil interaction modeling with tires and agricultural tools.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction\",\"authors\":\"Dhruvin Jasoliya , Alexandrina Untaroiu , Costin Untaroiu\",\"doi\":\"10.1016/j.jterra.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of deformable soils is one of the key factors in determining the tire, vehicle and/or agricultural tool design parameters. This literature review provides a brief overview of soil classification, soil testing, soil constitutive models, and numerical approaches utilized to model soil-tire/tool interaction. In the past, empirical, semi-empirical, and analytical soil models were used in these studies. However, some limitations occurred in terms of characterization of soil-tire/tool interaction in detail due to a large number of variables such as cohesion, moisture content, etc. In the last few decades, the finite element (FE) method was used with different formulations such as Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian to simulate the soil-tire/tool interaction. Recently, particle-based methods based on continuum mechanics and discrete mechanics started to be employed and showed good capability in terms of modeling of soil deformation and separation. Overall, this literature review provides simulation researchers insights into soil interaction modeling with tires and agricultural tools.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002248982300085X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002248982300085X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A review of soil modeling for numerical simulations of soil-tire/agricultural tools interaction
The study of deformable soils is one of the key factors in determining the tire, vehicle and/or agricultural tool design parameters. This literature review provides a brief overview of soil classification, soil testing, soil constitutive models, and numerical approaches utilized to model soil-tire/tool interaction. In the past, empirical, semi-empirical, and analytical soil models were used in these studies. However, some limitations occurred in terms of characterization of soil-tire/tool interaction in detail due to a large number of variables such as cohesion, moisture content, etc. In the last few decades, the finite element (FE) method was used with different formulations such as Lagrangian, Eulerian, and Arbitrary Lagrangian Eulerian to simulate the soil-tire/tool interaction. Recently, particle-based methods based on continuum mechanics and discrete mechanics started to be employed and showed good capability in terms of modeling of soil deformation and separation. Overall, this literature review provides simulation researchers insights into soil interaction modeling with tires and agricultural tools.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.