西南丘陵山区粘性土颗粒离散元接触模型及参数定标

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Le Yang , Junwei Li , Qinghui Lai , Liangliang Zhao , Jianjian Li , Ronghao Zeng , Zhihong Zhang
{"title":"西南丘陵山区粘性土颗粒离散元接触模型及参数定标","authors":"Le Yang ,&nbsp;Junwei Li ,&nbsp;Qinghui Lai ,&nbsp;Liangliang Zhao ,&nbsp;Jianjian Li ,&nbsp;Ronghao Zeng ,&nbsp;Zhihong Zhang","doi":"10.1016/j.jterra.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Distinct physical properties of red clay soil in hilly and mountainous regions of southwest China, including high adhesiveness and density, challenge the operation of agricultural machinery. A scarcity of accurate discrete element simulation parameters for this soil type restricts computational modeling. The study was focused on red clay soil with a moisture content of 12.50% ± 1% and a measured repose angle of 35.54°. The soil's inherent physical properties were identified through experimental assessments. Soil contact mechanical parameters were obtained from the GEMM database, and optimal contact parameter ranges were determined using Steepest Ascent Experiments, with the simulated soil particle repose angle serving as the response value. A second-order regression model was developed using a quadratic regression rotation orthogonal combination test. By taking the actual repose angle as the optimization criterion, parameters were optimized. The optimal contact mechanical parameters in EDEM simulations were identified as: JKR surface energy at 8.981 J/m<sup>2</sup>, recovery coefficient at 0.474, dynamic friction coefficient at 0.196, and static friction coefficient at 0.45. The model yielded a repose angle of 36.21°, closely corresponding with the observed value, with a relative error of 1.80%. The parameters calibrated in this study offer a valuable reference for future soil-tool interaction studies and tillage implement optimization in these regions.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"111 ","pages":"Pages 73-87"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region\",\"authors\":\"Le Yang ,&nbsp;Junwei Li ,&nbsp;Qinghui Lai ,&nbsp;Liangliang Zhao ,&nbsp;Jianjian Li ,&nbsp;Ronghao Zeng ,&nbsp;Zhihong Zhang\",\"doi\":\"10.1016/j.jterra.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distinct physical properties of red clay soil in hilly and mountainous regions of southwest China, including high adhesiveness and density, challenge the operation of agricultural machinery. A scarcity of accurate discrete element simulation parameters for this soil type restricts computational modeling. The study was focused on red clay soil with a moisture content of 12.50% ± 1% and a measured repose angle of 35.54°. The soil's inherent physical properties were identified through experimental assessments. Soil contact mechanical parameters were obtained from the GEMM database, and optimal contact parameter ranges were determined using Steepest Ascent Experiments, with the simulated soil particle repose angle serving as the response value. A second-order regression model was developed using a quadratic regression rotation orthogonal combination test. By taking the actual repose angle as the optimization criterion, parameters were optimized. The optimal contact mechanical parameters in EDEM simulations were identified as: JKR surface energy at 8.981 J/m<sup>2</sup>, recovery coefficient at 0.474, dynamic friction coefficient at 0.196, and static friction coefficient at 0.45. The model yielded a repose angle of 36.21°, closely corresponding with the observed value, with a relative error of 1.80%. The parameters calibrated in this study offer a valuable reference for future soil-tool interaction studies and tillage implement optimization in these regions.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"111 \",\"pages\":\"Pages 73-87\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489823000873\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000873","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

西南丘陵山区红粘土具有粘性高、密度大等独特的物理特性,这对农业机械的操作构成了挑战。由于缺乏精确的离散元模拟参数,限制了这种土壤类型的计算建模。以含水量为12.50%±1%、实测休止角为35.54°的红粘土为研究对象。土壤的固有物理性质是通过实验评估确定的。从GEMM数据库获取土壤接触力学参数,以模拟的土壤颗粒休止角作为响应值,利用陡坡试验确定最佳接触参数范围。采用二次回归旋转正交组合试验建立了二阶回归模型。以实际休止角为优化准则,对参数进行了优化。EDEM模拟的最优接触力学参数为:JKR表面能为8.981 J/m2,恢复系数为0.474,动摩擦系数为0.196,静摩擦系数为0.45。模型得到的休止角为36.21°,与观测值基本吻合,相对误差为1.80%。本研究校正的参数为今后这些地区土壤-工具相互作用研究和耕作方式优化提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region

Distinct physical properties of red clay soil in hilly and mountainous regions of southwest China, including high adhesiveness and density, challenge the operation of agricultural machinery. A scarcity of accurate discrete element simulation parameters for this soil type restricts computational modeling. The study was focused on red clay soil with a moisture content of 12.50% ± 1% and a measured repose angle of 35.54°. The soil's inherent physical properties were identified through experimental assessments. Soil contact mechanical parameters were obtained from the GEMM database, and optimal contact parameter ranges were determined using Steepest Ascent Experiments, with the simulated soil particle repose angle serving as the response value. A second-order regression model was developed using a quadratic regression rotation orthogonal combination test. By taking the actual repose angle as the optimization criterion, parameters were optimized. The optimal contact mechanical parameters in EDEM simulations were identified as: JKR surface energy at 8.981 J/m2, recovery coefficient at 0.474, dynamic friction coefficient at 0.196, and static friction coefficient at 0.45. The model yielded a repose angle of 36.21°, closely corresponding with the observed value, with a relative error of 1.80%. The parameters calibrated in this study offer a valuable reference for future soil-tool interaction studies and tillage implement optimization in these regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信