SPIDER:用于处理、编辑和呈现沉浸式高分辨率球形室内场景的框架

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
M. Tukur , G. Pintore , E. Gobbetti , J. Schneider , M. Agus
{"title":"SPIDER:用于处理、编辑和呈现沉浸式高分辨率球形室内场景的框架","authors":"M. Tukur ,&nbsp;G. Pintore ,&nbsp;E. Gobbetti ,&nbsp;J. Schneider ,&nbsp;M. Agus","doi":"10.1016/j.gmod.2023.101182","DOIUrl":null,"url":null,"abstract":"<div><p>Today’s Extended Reality (XR) applications that call for specific Diminished Reality (DR) strategies to hide specific classes of objects are increasingly using 360° cameras, which can capture entire areas in a single picture. In this work, we present an interactive-based image processing, editing and rendering system named <strong>SPIDER</strong>, that takes a spherical 360° indoor scene as input. The system is composed of a novel integrated deep learning architecture for extracting geometric and semantic information of full and empty rooms, based on gated and dilated convolutions, followed by a super-resolution module for improving the resolution of the color and depth signals. The obtained high resolution representations allow users to perform interactive exploration and basic editing operations on the reconstructed indoor scene, namely: (i) rendering of the scene in various modalities (point cloud, polygonal, wireframe) (ii) refurnishing (transferring portions of rooms) (iii) deferred shading through the usage of precomputed normal maps. These kinds of scene editing and manipulations can be used for assessing the inference from deep learning models and enable several Mixed Reality applications in areas such as furniture retails, interior designs, and real estates. Moreover, it can also be useful in data augmentation, arts, designs, and paintings. We report on the performance improvement of the various processing components on public domain spherical image indoor datasets.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"128 ","pages":"Article 101182"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SPIDER: A framework for processing, editing and presenting immersive high-resolution spherical indoor scenes\",\"authors\":\"M. Tukur ,&nbsp;G. Pintore ,&nbsp;E. Gobbetti ,&nbsp;J. Schneider ,&nbsp;M. Agus\",\"doi\":\"10.1016/j.gmod.2023.101182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today’s Extended Reality (XR) applications that call for specific Diminished Reality (DR) strategies to hide specific classes of objects are increasingly using 360° cameras, which can capture entire areas in a single picture. In this work, we present an interactive-based image processing, editing and rendering system named <strong>SPIDER</strong>, that takes a spherical 360° indoor scene as input. The system is composed of a novel integrated deep learning architecture for extracting geometric and semantic information of full and empty rooms, based on gated and dilated convolutions, followed by a super-resolution module for improving the resolution of the color and depth signals. The obtained high resolution representations allow users to perform interactive exploration and basic editing operations on the reconstructed indoor scene, namely: (i) rendering of the scene in various modalities (point cloud, polygonal, wireframe) (ii) refurnishing (transferring portions of rooms) (iii) deferred shading through the usage of precomputed normal maps. These kinds of scene editing and manipulations can be used for assessing the inference from deep learning models and enable several Mixed Reality applications in areas such as furniture retails, interior designs, and real estates. Moreover, it can also be useful in data augmentation, arts, designs, and paintings. We report on the performance improvement of the various processing components on public domain spherical image indoor datasets.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"128 \",\"pages\":\"Article 101182\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000127\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000127","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

如今的扩展现实(XR)应用需要特定的缩小现实(DR)策略来隐藏特定类别的物体,越来越多地使用360°相机,可以在一张照片中捕捉整个区域。在这项工作中,我们提出了一个基于交互式的图像处理、编辑和渲染系统,名为SPIDER,该系统以球形360°室内场景为输入。该系统由基于门控卷积和扩展卷积的新型集成深度学习架构组成,该架构用于提取满房间和空房间的几何和语义信息,然后是一个超分辨率模块,用于提高颜色和深度信号的分辨率。获得的高分辨率表示允许用户对重建的室内场景进行交互式探索和基本编辑操作,即:(i)以各种模式(点云,多边形,线框)渲染场景;(ii)重新布置(转移房间的部分);(iii)通过使用预先计算的法线贴图延迟着色。这些类型的场景编辑和操作可用于评估深度学习模型的推断,并在家具零售、室内设计和房地产等领域实现多种混合现实应用。此外,它还可以用于数据增强、艺术、设计和绘画。我们报告了各种处理组件在公共域球面图像室内数据集上的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SPIDER: A framework for processing, editing and presenting immersive high-resolution spherical indoor scenes

SPIDER: A framework for processing, editing and presenting immersive high-resolution spherical indoor scenes

Today’s Extended Reality (XR) applications that call for specific Diminished Reality (DR) strategies to hide specific classes of objects are increasingly using 360° cameras, which can capture entire areas in a single picture. In this work, we present an interactive-based image processing, editing and rendering system named SPIDER, that takes a spherical 360° indoor scene as input. The system is composed of a novel integrated deep learning architecture for extracting geometric and semantic information of full and empty rooms, based on gated and dilated convolutions, followed by a super-resolution module for improving the resolution of the color and depth signals. The obtained high resolution representations allow users to perform interactive exploration and basic editing operations on the reconstructed indoor scene, namely: (i) rendering of the scene in various modalities (point cloud, polygonal, wireframe) (ii) refurnishing (transferring portions of rooms) (iii) deferred shading through the usage of precomputed normal maps. These kinds of scene editing and manipulations can be used for assessing the inference from deep learning models and enable several Mixed Reality applications in areas such as furniture retails, interior designs, and real estates. Moreover, it can also be useful in data augmentation, arts, designs, and paintings. We report on the performance improvement of the various processing components on public domain spherical image indoor datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信