ZHAO Zheng , SU Sheng , SONG Ya-wei , Liu Yu-shuai , CHEN Yi-feng , JIA Meng-chuan , XU Kai , WANG Yi , HU Song , XIANG Jun
{"title":"生物质热反应过程激光诱导荧光光谱研究进展","authors":"ZHAO Zheng , SU Sheng , SONG Ya-wei , Liu Yu-shuai , CHEN Yi-feng , JIA Meng-chuan , XU Kai , WANG Yi , HU Song , XIANG Jun","doi":"10.1016/S1872-5813(23)60338-X","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><p>A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time <em>in-situ</em> measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy\",\"authors\":\"ZHAO Zheng , SU Sheng , SONG Ya-wei , Liu Yu-shuai , CHEN Yi-feng , JIA Meng-chuan , XU Kai , WANG Yi , HU Song , XIANG Jun\",\"doi\":\"10.1016/S1872-5813(23)60338-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><p>A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time <em>in-situ</em> measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258132360338X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258132360338X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy
Abstract
A profound study on the characteristics of pyrolysis and combustion of biomass and the generation and transfer of alkali metals can provide theoretical basis for the clean and efficient utilization of biomass. Due to the low measurement accuracy and time lag, traditional measurement methods have insufficient understanding of the biomass thermal reaction process. Laser induced fluorescence (LIF) technology has the advantages of non-disturbance, real-time in-situ measurement, strong component selectivity, good sensitivity, and high spatial and temporal resolution, which has been used in more and more studies on the biomass thermal reaction processes. This paper mainly reviews the application of LIF technologies in the research on the characteristics of biomass pyrolysis, combustion, and alkali metal release in recent years, analyzes the release and evolution behavior and formation mechanism of volatile matter during biomass pyrolysis under different reaction conditions, and expounds the flame structure information and alkali metal release, migration, and transformation characteristics during biomass combustion. Finally, some shortcomings in the current research and the future research directions are put forward.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.