{"title":"具有交叉协方差的结构误差变量模型的方差-协方差分量估计","authors":"Zhipeng Lv, Lifen Sui","doi":"10.1007/s11200-019-1021-1","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"63 4","pages":"485 - 508"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-019-1021-1","citationCount":"1","resultStr":"{\"title\":\"Variance-covariance component estimation for structured errors-in-variables models with cross-covariances\",\"authors\":\"Zhipeng Lv, Lifen Sui\",\"doi\":\"10.1007/s11200-019-1021-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"63 4\",\"pages\":\"485 - 508\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-019-1021-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-019-1021-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-019-1021-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Variance-covariance component estimation for structured errors-in-variables models with cross-covariances
In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.