具有交叉协方差的结构误差变量模型的方差-协方差分量估计

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Zhipeng Lv, Lifen Sui
{"title":"具有交叉协方差的结构误差变量模型的方差-协方差分量估计","authors":"Zhipeng Lv,&nbsp;Lifen Sui","doi":"10.1007/s11200-019-1021-1","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"63 4","pages":"485 - 508"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-019-1021-1","citationCount":"1","resultStr":"{\"title\":\"Variance-covariance component estimation for structured errors-in-variables models with cross-covariances\",\"authors\":\"Zhipeng Lv,&nbsp;Lifen Sui\",\"doi\":\"10.1007/s11200-019-1021-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"63 4\",\"pages\":\"485 - 508\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-019-1021-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-019-1021-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-019-1021-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于结构变量误差(EIV)模型的方差-协方差分量估计迭代算法。我们引入了变量投影原理,并应用拉格朗日乘子推导了结构化EIV模型的替代公式,该公式采用最小二乘解的形式,易于实现。然后,应用最小二乘方差分量估计(LS-VCE)估计结构化EIV模型中的不同(co)方差分量。提出的算法包括协方差分量的估计,这在其他最近提出的方法中没有考虑。最后,详细讨论了EIV随机模型(co)方差分量的可估计性。本文提出的算法的有效性通过两个应用程序来证明:多元线性回归和自回归,在模拟数据集或在真实数据集上进行一些假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance-covariance component estimation for structured errors-in-variables models with cross-covariances

In this contribution, an iterative algorithm for variance-covariance component estimation based on the structured errors-in-variables (EIV) model is proposed. We introduce the variable projection principle and derive alternative formulae for the structured EIV model by applying Lagrange multipliers, which take the form of a least-squares solution and are easy to implement. Then, least-squares variance component estimation (LS-VCE) is applied to estimate different (co)variance components in a structured EIV model. The proposed algorithm includes the estimation of covariance components, which is not considered in other recently proposed approaches. Finally, the estimability of the (co)variance components of the EIV stochastic model is discussed in detail. The efficacy of the proposed algorithm is demonstrated through two applications: multiple linear regression and auto-regression, on simulated datasets or on a real dataset with some assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信