Na Chen , Wanxiong Yong , Tuodong Xiong , Guodong Fu
{"title":"基于光致电子转移显示和存储的快速光致变色和荧光可切换有机水凝胶","authors":"Na Chen , Wanxiong Yong , Tuodong Xiong , Guodong Fu","doi":"10.1016/j.jphotochem.2023.115262","DOIUrl":null,"url":null,"abstract":"<div><p>The current research on viologen-based photochromic hydrogels is limited due to the significant hindrance of water on the photochromic behavior of viologens. However, there is considerable potential for applying viologen-based hydrogels that exhibit a rapid response to ultraviolet light in various applications. In this study, organohydrogels (OGHs) with excellent photochromic properties and fluorescence switchability were prepared by introducing zinc oxide (ZnO) and viologens into the PVA hydrogel system that used glycerol as a multifunctional co-solvent. Under the irradiation of a UV lamp (6 W, 365 nm), the photogenerated electrons efficiently transferred from ZnO to viologen dications, resulting in visible color change within 1 s. Meanwhile, the electron transfer achieved the quenching of yellow fluorescence from ZnO, enabling the fluorescence switchability of the OGHs. In addition, the fading process of the photochromic OGHs could be adjusted according to different temperature environments. Compared to traditional photochromic hydrogels, the OGHs demonstrated good freeze resistance and dry resistance, thus maintaining better photochromic repeatability and stability of initial fluorescence intensity under long-term storage conditions. These qualities give the OGHs high potential for applications in displays, optical information storage and anti-counterfeiting.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"447 ","pages":"Article 115262"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast photochromic and fluorescent switchable organohydrogels based on photoinduced electron transfer for display and storage\",\"authors\":\"Na Chen , Wanxiong Yong , Tuodong Xiong , Guodong Fu\",\"doi\":\"10.1016/j.jphotochem.2023.115262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current research on viologen-based photochromic hydrogels is limited due to the significant hindrance of water on the photochromic behavior of viologens. However, there is considerable potential for applying viologen-based hydrogels that exhibit a rapid response to ultraviolet light in various applications. In this study, organohydrogels (OGHs) with excellent photochromic properties and fluorescence switchability were prepared by introducing zinc oxide (ZnO) and viologens into the PVA hydrogel system that used glycerol as a multifunctional co-solvent. Under the irradiation of a UV lamp (6 W, 365 nm), the photogenerated electrons efficiently transferred from ZnO to viologen dications, resulting in visible color change within 1 s. Meanwhile, the electron transfer achieved the quenching of yellow fluorescence from ZnO, enabling the fluorescence switchability of the OGHs. In addition, the fading process of the photochromic OGHs could be adjusted according to different temperature environments. Compared to traditional photochromic hydrogels, the OGHs demonstrated good freeze resistance and dry resistance, thus maintaining better photochromic repeatability and stability of initial fluorescence intensity under long-term storage conditions. These qualities give the OGHs high potential for applications in displays, optical information storage and anti-counterfeiting.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":\"447 \",\"pages\":\"Article 115262\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S101060302300727X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101060302300727X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fast photochromic and fluorescent switchable organohydrogels based on photoinduced electron transfer for display and storage
The current research on viologen-based photochromic hydrogels is limited due to the significant hindrance of water on the photochromic behavior of viologens. However, there is considerable potential for applying viologen-based hydrogels that exhibit a rapid response to ultraviolet light in various applications. In this study, organohydrogels (OGHs) with excellent photochromic properties and fluorescence switchability were prepared by introducing zinc oxide (ZnO) and viologens into the PVA hydrogel system that used glycerol as a multifunctional co-solvent. Under the irradiation of a UV lamp (6 W, 365 nm), the photogenerated electrons efficiently transferred from ZnO to viologen dications, resulting in visible color change within 1 s. Meanwhile, the electron transfer achieved the quenching of yellow fluorescence from ZnO, enabling the fluorescence switchability of the OGHs. In addition, the fading process of the photochromic OGHs could be adjusted according to different temperature environments. Compared to traditional photochromic hydrogels, the OGHs demonstrated good freeze resistance and dry resistance, thus maintaining better photochromic repeatability and stability of initial fluorescence intensity under long-term storage conditions. These qualities give the OGHs high potential for applications in displays, optical information storage and anti-counterfeiting.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.