{"title":"基于in2s3纳米材料的综合吸附-降解技术:反应参数和共存物质的影响","authors":"Soumya Ranjan Mishra, Vishal Gadore, Md. Ahmaruzzaman","doi":"10.1016/j.hazl.2023.100087","DOIUrl":null,"url":null,"abstract":"<div><p>The possibility of combined adsorption-degradation processes in wastewater treatment using nanomaterials based on indium sulfide (In<sub>2</sub>S<sub>3</sub>) is examined in this review paper. Regarding the synergistic adsorption and degradation of pollutants, In<sub>2</sub>S<sub>3</sub> performs exceptionally well, making it a suitable choice for wastewater remediation. Insights have been given to the pollutant removal mechanism through this integrated technique. The synergistic removal process is affected by several operational factors, including pH, catalyst dose, pollutant concentration, and contact duration. This analysis highlights the significance of optimizing these parameters for optimal contaminant removal efficiency. The influence of co-existing species, including cations, anions, and organic compounds, on the integrated elimination process is further highlighted by a discussion of their role. Future research directions are suggested, including a better comprehension of underlying processes, investigation of hybrid nanocomposites, and evaluation of long-term stability and recyclability to enhance the applicability of In<sub>2</sub>S<sub>3</sub>-based nanomaterials. This study aids in the creation of effective and long-lasting wastewater treatment methods by using the potential of In<sub>2</sub>S<sub>3</sub>-based nanomaterials.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"4 ","pages":"Article 100087"},"PeriodicalIF":6.6000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A critical review on In2S3-based nanomaterial for emerging contaminants elimination through integrated adsorption-degradation technique: Effect of reaction parameters and co-existing species\",\"authors\":\"Soumya Ranjan Mishra, Vishal Gadore, Md. Ahmaruzzaman\",\"doi\":\"10.1016/j.hazl.2023.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The possibility of combined adsorption-degradation processes in wastewater treatment using nanomaterials based on indium sulfide (In<sub>2</sub>S<sub>3</sub>) is examined in this review paper. Regarding the synergistic adsorption and degradation of pollutants, In<sub>2</sub>S<sub>3</sub> performs exceptionally well, making it a suitable choice for wastewater remediation. Insights have been given to the pollutant removal mechanism through this integrated technique. The synergistic removal process is affected by several operational factors, including pH, catalyst dose, pollutant concentration, and contact duration. This analysis highlights the significance of optimizing these parameters for optimal contaminant removal efficiency. The influence of co-existing species, including cations, anions, and organic compounds, on the integrated elimination process is further highlighted by a discussion of their role. Future research directions are suggested, including a better comprehension of underlying processes, investigation of hybrid nanocomposites, and evaluation of long-term stability and recyclability to enhance the applicability of In<sub>2</sub>S<sub>3</sub>-based nanomaterials. This study aids in the creation of effective and long-lasting wastewater treatment methods by using the potential of In<sub>2</sub>S<sub>3</sub>-based nanomaterials.</p></div>\",\"PeriodicalId\":93463,\"journal\":{\"name\":\"Journal of hazardous materials letters\",\"volume\":\"4 \",\"pages\":\"Article 100087\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666911023000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911023000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A critical review on In2S3-based nanomaterial for emerging contaminants elimination through integrated adsorption-degradation technique: Effect of reaction parameters and co-existing species
The possibility of combined adsorption-degradation processes in wastewater treatment using nanomaterials based on indium sulfide (In2S3) is examined in this review paper. Regarding the synergistic adsorption and degradation of pollutants, In2S3 performs exceptionally well, making it a suitable choice for wastewater remediation. Insights have been given to the pollutant removal mechanism through this integrated technique. The synergistic removal process is affected by several operational factors, including pH, catalyst dose, pollutant concentration, and contact duration. This analysis highlights the significance of optimizing these parameters for optimal contaminant removal efficiency. The influence of co-existing species, including cations, anions, and organic compounds, on the integrated elimination process is further highlighted by a discussion of their role. Future research directions are suggested, including a better comprehension of underlying processes, investigation of hybrid nanocomposites, and evaluation of long-term stability and recyclability to enhance the applicability of In2S3-based nanomaterials. This study aids in the creation of effective and long-lasting wastewater treatment methods by using the potential of In2S3-based nanomaterials.