Marie Hoshi-Numahata , Aya Takakura , Atsuko Nakanishi-Kimura , Haruhisa Watanabe , Kentaro Takada , Mai Nishiura , Yoshiaki Sato , Ryoko Takao-Kawabata , Tadahiro Iimura
{"title":"通过建立AI驱动的形态计量分析和基于GIS的空间映射评估每日和每周服用特立帕肽的犬皮质骨重塑","authors":"Marie Hoshi-Numahata , Aya Takakura , Atsuko Nakanishi-Kimura , Haruhisa Watanabe , Kentaro Takada , Mai Nishiura , Yoshiaki Sato , Ryoko Takao-Kawabata , Tadahiro Iimura","doi":"10.1016/j.bonr.2023.101720","DOIUrl":null,"url":null,"abstract":"<div><p>Larger animal models with a well-developed Haversian system, as observed in humans, are ideal to analyze cortical bone remodeling in pharmacological studies of anti-osteoporosis drugs, although they have some limitations in controlling individual variability in size, weight, age, and number. This study aimed to morphometrically analyze cortical bone remodeling focusing on Haversian canals in dogs using four regimens of TPTD with daily and weekly administrations at lower and higher weekly doses (4.9 μg/kg/week and 19.8 μg/kg/week, respectively) for 9 months. A micro-computed tomography-based analysis showed no significant differences among regimen groups. By establishing artificial intelligence (AI)-driven morphometric analyses and geographical information system (GIS)-based spatial mapping of Haversian canals that does not require confocal microscopy but is possible with more commonly used wide field microscopes, we successfully observed significant morphometric distinctions among regimens applied even in dogs. Our analytical results suggested that the daily higher regimen specifically increased the number of eroded pores creating spaces between existing canals, thus stimulating cortical bone remodeling.</p></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of cortical bone remodeling in canines treated with daily and weekly administrations of teriparatide by establishing AI-driven morphometric analyses and GIS-based spatial mapping\",\"authors\":\"Marie Hoshi-Numahata , Aya Takakura , Atsuko Nakanishi-Kimura , Haruhisa Watanabe , Kentaro Takada , Mai Nishiura , Yoshiaki Sato , Ryoko Takao-Kawabata , Tadahiro Iimura\",\"doi\":\"10.1016/j.bonr.2023.101720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Larger animal models with a well-developed Haversian system, as observed in humans, are ideal to analyze cortical bone remodeling in pharmacological studies of anti-osteoporosis drugs, although they have some limitations in controlling individual variability in size, weight, age, and number. This study aimed to morphometrically analyze cortical bone remodeling focusing on Haversian canals in dogs using four regimens of TPTD with daily and weekly administrations at lower and higher weekly doses (4.9 μg/kg/week and 19.8 μg/kg/week, respectively) for 9 months. A micro-computed tomography-based analysis showed no significant differences among regimen groups. By establishing artificial intelligence (AI)-driven morphometric analyses and geographical information system (GIS)-based spatial mapping of Haversian canals that does not require confocal microscopy but is possible with more commonly used wide field microscopes, we successfully observed significant morphometric distinctions among regimens applied even in dogs. Our analytical results suggested that the daily higher regimen specifically increased the number of eroded pores creating spaces between existing canals, thus stimulating cortical bone remodeling.</p></div>\",\"PeriodicalId\":9043,\"journal\":{\"name\":\"Bone Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352187223000669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187223000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Evaluation of cortical bone remodeling in canines treated with daily and weekly administrations of teriparatide by establishing AI-driven morphometric analyses and GIS-based spatial mapping
Larger animal models with a well-developed Haversian system, as observed in humans, are ideal to analyze cortical bone remodeling in pharmacological studies of anti-osteoporosis drugs, although they have some limitations in controlling individual variability in size, weight, age, and number. This study aimed to morphometrically analyze cortical bone remodeling focusing on Haversian canals in dogs using four regimens of TPTD with daily and weekly administrations at lower and higher weekly doses (4.9 μg/kg/week and 19.8 μg/kg/week, respectively) for 9 months. A micro-computed tomography-based analysis showed no significant differences among regimen groups. By establishing artificial intelligence (AI)-driven morphometric analyses and geographical information system (GIS)-based spatial mapping of Haversian canals that does not require confocal microscopy but is possible with more commonly used wide field microscopes, we successfully observed significant morphometric distinctions among regimens applied even in dogs. Our analytical results suggested that the daily higher regimen specifically increased the number of eroded pores creating spaces between existing canals, thus stimulating cortical bone remodeling.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.