微孔对生物印刷聚己内酯骨支架影响的实验和有限元分析

Q1 Computer Science
Senthil Maharaj Kennedy , K. Amudhan , R.B. Jeen Robert , A. Vasanthanathan , A. Vignesh Moorthi Pandian
{"title":"微孔对生物印刷聚己内酯骨支架影响的实验和有限元分析","authors":"Senthil Maharaj Kennedy ,&nbsp;K. Amudhan ,&nbsp;R.B. Jeen Robert ,&nbsp;A. Vasanthanathan ,&nbsp;A. Vignesh Moorthi Pandian","doi":"10.1016/j.bprint.2023.e00301","DOIUrl":null,"url":null,"abstract":"<div><p><span>Bone scaffolds are three-dimensional biocompatible structure that mimics the properties of natural bone and is used in tissue engineering<span><span> applications to help repair or regenerate bone tissue<span><span>. In addition to acting as a temporary framework for the growth of new bone, it permits the infiltration of cells, nutrients, and blood vessels to speed up the healing process. The performance and use of bone scaffolds are greatly influenced by the design of their pores.Pore shapes in bone scaffolds play a crucial role in determining their functionality and performance.In the current study, bone scaffolds were fabricatedusing </span>3D printing and </span></span>polycaprolactone material with various pore shapes, including circles, hexagons, squares, and triangles. SOLIDWORKS® 2023 was used to solid model the scaffolds with various pore shapes. Compression tests and </span></span>finite element analysis<span> using ANSYS WORKBENCH® 2023 were used to assess the mechanical properties of these scaffolds. The findings show that the circular pore shape performed better than its counter parts. This study advances our knowledge of the connection between pore shape and scaffold functionality, facilitating the design of better bone scaffolds for a varied applications.</span></p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental and finite element analysis on the effect of pores on bio-printed polycaprolactone bone scaffolds\",\"authors\":\"Senthil Maharaj Kennedy ,&nbsp;K. Amudhan ,&nbsp;R.B. Jeen Robert ,&nbsp;A. Vasanthanathan ,&nbsp;A. Vignesh Moorthi Pandian\",\"doi\":\"10.1016/j.bprint.2023.e00301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Bone scaffolds are three-dimensional biocompatible structure that mimics the properties of natural bone and is used in tissue engineering<span><span> applications to help repair or regenerate bone tissue<span><span>. In addition to acting as a temporary framework for the growth of new bone, it permits the infiltration of cells, nutrients, and blood vessels to speed up the healing process. The performance and use of bone scaffolds are greatly influenced by the design of their pores.Pore shapes in bone scaffolds play a crucial role in determining their functionality and performance.In the current study, bone scaffolds were fabricatedusing </span>3D printing and </span></span>polycaprolactone material with various pore shapes, including circles, hexagons, squares, and triangles. SOLIDWORKS® 2023 was used to solid model the scaffolds with various pore shapes. Compression tests and </span></span>finite element analysis<span> using ANSYS WORKBENCH® 2023 were used to assess the mechanical properties of these scaffolds. The findings show that the circular pore shape performed better than its counter parts. This study advances our knowledge of the connection between pore shape and scaffold functionality, facilitating the design of better bone scaffolds for a varied applications.</span></p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886623000441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

骨支架是一种三维生物相容性结构,模仿天然骨的特性,用于组织工程应用,帮助修复或再生骨组织。除了作为新骨生长的临时框架外,它还允许细胞、营养物质和血管的渗透,以加快愈合过程。骨支架的性能和使用在很大程度上受到其孔隙设计的影响。骨支架中的孔隙形状在决定其功能和性能方面起着至关重要的作用。在目前的研究中,骨支架是使用3D打印和聚己内酯材料制成的,具有各种孔形状,包括圆形、六边形、正方形和三角形。SOLIDWORKS®2023用于对具有各种孔隙形状的支架进行实体建模。使用ANSYS WORKBENCH®2023进行压缩试验和有限元分析,以评估这些支架的机械性能。研究结果表明,圆形孔的形状比其对应部分表现得更好。这项研究加深了我们对孔隙形状和支架功能之间联系的了解,有助于设计出适用于各种应用的更好的骨支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and finite element analysis on the effect of pores on bio-printed polycaprolactone bone scaffolds

Bone scaffolds are three-dimensional biocompatible structure that mimics the properties of natural bone and is used in tissue engineering applications to help repair or regenerate bone tissue. In addition to acting as a temporary framework for the growth of new bone, it permits the infiltration of cells, nutrients, and blood vessels to speed up the healing process. The performance and use of bone scaffolds are greatly influenced by the design of their pores.Pore shapes in bone scaffolds play a crucial role in determining their functionality and performance.In the current study, bone scaffolds were fabricatedusing 3D printing and polycaprolactone material with various pore shapes, including circles, hexagons, squares, and triangles. SOLIDWORKS® 2023 was used to solid model the scaffolds with various pore shapes. Compression tests and finite element analysis using ANSYS WORKBENCH® 2023 were used to assess the mechanical properties of these scaffolds. The findings show that the circular pore shape performed better than its counter parts. This study advances our knowledge of the connection between pore shape and scaffold functionality, facilitating the design of better bone scaffolds for a varied applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信