Xinxin Li, Xinghua Zhang, Qingsong Zhao, Hong Liao
{"title":"豆科植物根系适应酸性土壤的遗传改良","authors":"Xinxin Li, Xinghua Zhang, Qingsong Zhao, Hong Liao","doi":"10.1016/j.cj.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Acid soils occupy approximately 50% of potentially arable lands. Improving crop productivity in acid soils, therefore, will be crucial for ensuring food security and agricultural sustainability. High soil acidity often coexists with phosphorus (P) deficiency and aluminum (Al) toxicity, a combination that severely impedes crop growth and yield across wide areas. As roots explore soil for the nutrients and water required for plant growth and development, they also sense and respond to below-ground stresses. Within the terrestrial context of widespread P deficiency and Al toxicity pressures, plants, particularly roots, have evolved a variety of mechanisms for adapting to these stresses. As legumes, soybean (<em>Glycine max</em>) plants may acquire nitrogen (N) through symbiotic nitrogen fixation (SNF), an adaptation that can be useful for mitigating excessive N fertilizer use, either directly as leguminous crop participants in rotation and intercropping systems, or secondarily as green manure cover crops. In this review, we investigate legumes, especially soybean, for recent advances in our understanding of root-based mechanisms linked with root architecture modification, exudation and symbiosis, together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils. We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic improvement of legume roots for adaption to acid soils\",\"authors\":\"Xinxin Li, Xinghua Zhang, Qingsong Zhao, Hong Liao\",\"doi\":\"10.1016/j.cj.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acid soils occupy approximately 50% of potentially arable lands. Improving crop productivity in acid soils, therefore, will be crucial for ensuring food security and agricultural sustainability. High soil acidity often coexists with phosphorus (P) deficiency and aluminum (Al) toxicity, a combination that severely impedes crop growth and yield across wide areas. As roots explore soil for the nutrients and water required for plant growth and development, they also sense and respond to below-ground stresses. Within the terrestrial context of widespread P deficiency and Al toxicity pressures, plants, particularly roots, have evolved a variety of mechanisms for adapting to these stresses. As legumes, soybean (<em>Glycine max</em>) plants may acquire nitrogen (N) through symbiotic nitrogen fixation (SNF), an adaptation that can be useful for mitigating excessive N fertilizer use, either directly as leguminous crop participants in rotation and intercropping systems, or secondarily as green manure cover crops. In this review, we investigate legumes, especially soybean, for recent advances in our understanding of root-based mechanisms linked with root architecture modification, exudation and symbiosis, together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils. We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000508\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000508","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Genetic improvement of legume roots for adaption to acid soils
Acid soils occupy approximately 50% of potentially arable lands. Improving crop productivity in acid soils, therefore, will be crucial for ensuring food security and agricultural sustainability. High soil acidity often coexists with phosphorus (P) deficiency and aluminum (Al) toxicity, a combination that severely impedes crop growth and yield across wide areas. As roots explore soil for the nutrients and water required for plant growth and development, they also sense and respond to below-ground stresses. Within the terrestrial context of widespread P deficiency and Al toxicity pressures, plants, particularly roots, have evolved a variety of mechanisms for adapting to these stresses. As legumes, soybean (Glycine max) plants may acquire nitrogen (N) through symbiotic nitrogen fixation (SNF), an adaptation that can be useful for mitigating excessive N fertilizer use, either directly as leguminous crop participants in rotation and intercropping systems, or secondarily as green manure cover crops. In this review, we investigate legumes, especially soybean, for recent advances in our understanding of root-based mechanisms linked with root architecture modification, exudation and symbiosis, together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils. We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.