OsTHA8编码水稻叶绿体发育过程中RNA编辑和剪接所需的五肽重复蛋白

IF 6 1区 农林科学 Q1 AGRONOMY
Yanwei Wang , Yu Duan , Pengfei Ai
{"title":"OsTHA8编码水稻叶绿体发育过程中RNA编辑和剪接所需的五肽重复蛋白","authors":"Yanwei Wang ,&nbsp;Yu Duan ,&nbsp;Pengfei Ai","doi":"10.1016/j.cj.2023.04.009","DOIUrl":null,"url":null,"abstract":"<div><p>In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice (<em>Oryza sativa</em>) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of <em>THA8</em> (<em>thylakoid assembly 8</em>) in <em>Arabidopsis</em> and maize. This gene is designated as <em>OsTHA8</em> hereafter. OsTHA8 showed a typical pentatricopeptide repeat (PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. <em>OsTHA8</em> was expressed mainly in young leaves and leaf sheaths. The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of <em>ndhB-611</em>/<em>737</em> and <em>rps8-182</em> transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor (OsMORF8) and thioredoxin z (OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene <em>ycf3</em> was detected in <em>ostha8</em>. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OsTHA8 encodes a pentatricopeptide repeat protein required for RNA editing and splicing during rice chloroplast development\",\"authors\":\"Yanwei Wang ,&nbsp;Yu Duan ,&nbsp;Pengfei Ai\",\"doi\":\"10.1016/j.cj.2023.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice (<em>Oryza sativa</em>) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of <em>THA8</em> (<em>thylakoid assembly 8</em>) in <em>Arabidopsis</em> and maize. This gene is designated as <em>OsTHA8</em> hereafter. OsTHA8 showed a typical pentatricopeptide repeat (PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. <em>OsTHA8</em> was expressed mainly in young leaves and leaf sheaths. The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of <em>ndhB-611</em>/<em>737</em> and <em>rps8-182</em> transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor (OsMORF8) and thioredoxin z (OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene <em>ycf3</em> was detected in <em>ostha8</em>. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000673\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000673","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

在高等植物中,叶绿体是光合作用和细胞中许多重要代谢过程中最重要的细胞器。尽管已经鉴定出许多参与叶绿体发育的基因,但这种发育的机制尚不完全清楚。在本研究中,从突变体库中分离到一个表现出淡绿色和幼苗致死性的水稻突变体。突变基因在拟南芥和玉米中被鉴定为THA8(类囊体组装8)的直向同源物。该基因在下文中被命名为OsTHA8。OsTHA8显示出典型的五肽重复序列(PPR),其特征仅为四个PPR基序。OsTHA8的失活导致水稻幼苗期叶绿体发育不足。OsTHA8主要在幼叶和叶鞘中表达。OsTHA8蛋白定位于叶绿体。OsTHA8功能的丧失削弱了ndhB-611/737和rps8-182转录本在正常条件下的编辑效率。Y2H和BiFC表明,OsTHA8通过与多器官RNA编辑因子(OsMORF8)和硫氧还蛋白z(OsTRXz)形成编辑体来促进RNA编辑,这些因子在水稻叶绿体中起RNA编辑的作用。缺陷的OsTHA8损害叶绿体核糖体组装,并导致PEP依赖性基因和光合作用相关基因的表达减少。在ostha8中检测到叶绿体基因ycf3的异常剪接。这些发现揭示了RNA介导的叶绿体生物发生的协同调节机制,拓宽了PPR家族的功能,并为水稻中的RNA编辑复合体提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OsTHA8 encodes a pentatricopeptide repeat protein required for RNA editing and splicing during rice chloroplast development

In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice (Oryza sativa) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of THA8 (thylakoid assembly 8) in Arabidopsis and maize. This gene is designated as OsTHA8 hereafter. OsTHA8 showed a typical pentatricopeptide repeat (PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. OsTHA8 was expressed mainly in young leaves and leaf sheaths. The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of ndhB-611/737 and rps8-182 transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor (OsMORF8) and thioredoxin z (OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene ycf3 was detected in ostha8. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crop Journal
Crop Journal Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍: The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信