高空间维度上具有正双稳态非线性的非线性扩散方程的自由边界问题Ⅱ:解的渐近轮廓和径向阶解

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuki Kaneko , Hiroshi Matsuzawa , Yoshio Yamada
{"title":"高空间维度上具有正双稳态非线性的非线性扩散方程的自由边界问题Ⅱ:解的渐近轮廓和径向阶解","authors":"Yuki Kaneko ,&nbsp;Hiroshi Matsuzawa ,&nbsp;Yoshio Yamada","doi":"10.1016/j.matpur.2023.07.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper is a continuation of our previous paper (Kaneko-Matsuzawa-Yamada, Discrete Contin. Dyn. Syst., 2022), where we have classified all large-time behaviors of radially symmetric solutions to a free boundary problem<span> of reaction diffusion equation </span></span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with positive bistable nonlinearity <em>f</em> in high space dimensions. The positive bistable nonlinearity means that <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span><span> has exactly two positive stable equilibria. Among the classified solutions, we are interested in a spreading solution, that is a solution </span><span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> expands to the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to a positive stable equilibrium for <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> uniformly in any compact set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. When we discuss whole asymptotic profiles of spreading solutions, it has been known that they are generally described with use of a semi-wave obtained from the corresponding semi-wave problem.</p><p><span>Our main purpose is to study precise asymptotic estimates for any spreading solution whose profile accompanies a propagating terrace with two different types of propagating speeds. Such a spreading phenomenon occurs when </span><span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to the largest equilibrium of <em>f</em> and the related semi-wave problem does not have a solution. We will prove that the propagating terrace consists of two functions; one is a semi-wave corresponding to a smaller positive equilibrium of <em>f</em><span> and the other is a traveling wave connecting two positive equilibria of </span><em>f</em><span>. In order to give sharp estimates for a radial terrace solution with the above properties, we need so called logarithmic shiftings, which are revealed by Uchiyama (1983) and Du-Matsuzawa-Zhou (2015) in higher dimensional cases. Moreover, we will see that two types of the logarithmic shiftings appear in the estimates. The proof for the higher dimensional case is very different from the one-dimensional case established by Kaneko-Matsuzawa-Yamada (2020). To derive exact logarithmic terms, we have to construct a series of upper and lower solutions to make estimates more and more accurate.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions II: Asymptotic profiles of solutions and radial terrace solution\",\"authors\":\"Yuki Kaneko ,&nbsp;Hiroshi Matsuzawa ,&nbsp;Yoshio Yamada\",\"doi\":\"10.1016/j.matpur.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper is a continuation of our previous paper (Kaneko-Matsuzawa-Yamada, Discrete Contin. Dyn. Syst., 2022), where we have classified all large-time behaviors of radially symmetric solutions to a free boundary problem<span> of reaction diffusion equation </span></span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with positive bistable nonlinearity <em>f</em> in high space dimensions. The positive bistable nonlinearity means that <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span><span> has exactly two positive stable equilibria. Among the classified solutions, we are interested in a spreading solution, that is a solution </span><span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> expands to the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to a positive stable equilibrium for <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> uniformly in any compact set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. When we discuss whole asymptotic profiles of spreading solutions, it has been known that they are generally described with use of a semi-wave obtained from the corresponding semi-wave problem.</p><p><span>Our main purpose is to study precise asymptotic estimates for any spreading solution whose profile accompanies a propagating terrace with two different types of propagating speeds. Such a spreading phenomenon occurs when </span><span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to the largest equilibrium of <em>f</em> and the related semi-wave problem does not have a solution. We will prove that the propagating terrace consists of two functions; one is a semi-wave corresponding to a smaller positive equilibrium of <em>f</em><span> and the other is a traveling wave connecting two positive equilibria of </span><em>f</em><span>. In order to give sharp estimates for a radial terrace solution with the above properties, we need so called logarithmic shiftings, which are revealed by Uchiyama (1983) and Du-Matsuzawa-Zhou (2015) in higher dimensional cases. Moreover, we will see that two types of the logarithmic shiftings appear in the estimates. The proof for the higher dimensional case is very different from the one-dimensional case established by Kaneko-Matsuzawa-Yamada (2020). To derive exact logarithmic terms, we have to construct a series of upper and lower solutions to make estimates more and more accurate.</span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423000995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文是我们先前论文(Kaneko Matsuzawa Yamada,Discrete Contin.Dyn.Syst.,2022)的延续,在该论文中,我们对高空间维度上具有正双稳态非线性f的反应扩散方程ut=Δu+f(u)的自由边界问题的径向对称解的所有大时间行为进行了分类。正双稳态非线性意味着f(u)=0恰好有两个正稳定平衡。在分类解中,我们感兴趣的是一个扩展解,即x∈RN的自由边界|x|=h(t)的解(u(t,|x|),h(t→∞, |x|≤h(t)扩展到整个空间RN,并且u(t,‧)在RN的任何紧集中一致收敛到f(u)的正稳定平衡。当我们讨论扩展解的整体渐近轮廓时,已知它们通常是用从相应的半波问题中获得的半波来描述的。我们的主要目的是研究任何扩展解的精确渐近估计,其轮廓伴随着具有两种不同类型传播速度的传播平台。当u(t,‧)收敛到f的最大平衡点,并且相关的半波问题没有解时,就会出现这种扩散现象。我们将证明传播阶地由两个函数组成;一个是对应于f的较小正平衡的半波,另一个是连接f的两个正平衡的行波。为了对具有上述性质的径向阶地解给出尖锐的估计,我们需要所谓的对数移位,这是Uchiyama(1983)和Du Matsuzawa Zhou(2015)在高维情况下揭示的。此外,我们将看到两种类型的对数移位出现在估计中。高维情况的证明与Kaneko Matsuzawa Yamada(2020)建立的一维情况非常不同。为了推导精确的对数项,我们必须构造一系列上下解,以使估计越来越准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions II: Asymptotic profiles of solutions and radial terrace solution

This paper is a continuation of our previous paper (Kaneko-Matsuzawa-Yamada, Discrete Contin. Dyn. Syst., 2022), where we have classified all large-time behaviors of radially symmetric solutions to a free boundary problem of reaction diffusion equation ut=Δu+f(u) with positive bistable nonlinearity f in high space dimensions. The positive bistable nonlinearity means that f(u)=0 has exactly two positive stable equilibria. Among the classified solutions, we are interested in a spreading solution, that is a solution (u(t,|x|),h(t)) for xRN with free boundary |x|=h(t) such that, as t, |x|h(t) expands to the whole space RN and u(t,) converges to a positive stable equilibrium for f(u) uniformly in any compact set of RN. When we discuss whole asymptotic profiles of spreading solutions, it has been known that they are generally described with use of a semi-wave obtained from the corresponding semi-wave problem.

Our main purpose is to study precise asymptotic estimates for any spreading solution whose profile accompanies a propagating terrace with two different types of propagating speeds. Such a spreading phenomenon occurs when u(t,) converges to the largest equilibrium of f and the related semi-wave problem does not have a solution. We will prove that the propagating terrace consists of two functions; one is a semi-wave corresponding to a smaller positive equilibrium of f and the other is a traveling wave connecting two positive equilibria of f. In order to give sharp estimates for a radial terrace solution with the above properties, we need so called logarithmic shiftings, which are revealed by Uchiyama (1983) and Du-Matsuzawa-Zhou (2015) in higher dimensional cases. Moreover, we will see that two types of the logarithmic shiftings appear in the estimates. The proof for the higher dimensional case is very different from the one-dimensional case established by Kaneko-Matsuzawa-Yamada (2020). To derive exact logarithmic terms, we have to construct a series of upper and lower solutions to make estimates more and more accurate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信