城市数字孪生的时空智能框架与实验平台

Q1 Computer Science
Jinxing Hu , Zhihan Lv , Diping Yuan , Bing He , Wenjiang Chen , Xiongfei Ye , Donghao Li , Ge Yang
{"title":"城市数字孪生的时空智能框架与实验平台","authors":"Jinxing Hu ,&nbsp;Zhihan Lv ,&nbsp;Diping Yuan ,&nbsp;Bing He ,&nbsp;Wenjiang Chen ,&nbsp;Xiongfei Ye ,&nbsp;Donghao Li ,&nbsp;Ge Yang","doi":"10.1016/j.vrih.2022.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>This work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technology and Virtual City in urban Digital Twins. Besides, an improved small object detection model is proposed: YOLOv5-Pyramid, and Siamese network video tracking models, namely MPSiam and FSSiamese, are established. Finally, an experimental platform is built to verify the georeferencing correction scheme of video images. The experimental results show that the Multiply-Accumulate value of MPSiam is 0.5B, and that of ResNet50-Siam is 4.5B. Besides, the model is compressed by 4.8 times. The inference speed has increased by 3.3 times, reaching 83 Frames Per Second. 3% of the Average Expectation Overlap is lost. Therefore, the urban Digital Twins-oriented GeoAI framework established here has excellent performance for video georeferencing and target detection problems.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 3","pages":"Pages 213-231"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins\",\"authors\":\"Jinxing Hu ,&nbsp;Zhihan Lv ,&nbsp;Diping Yuan ,&nbsp;Bing He ,&nbsp;Wenjiang Chen ,&nbsp;Xiongfei Ye ,&nbsp;Donghao Li ,&nbsp;Ge Yang\",\"doi\":\"10.1016/j.vrih.2022.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technology and Virtual City in urban Digital Twins. Besides, an improved small object detection model is proposed: YOLOv5-Pyramid, and Siamese network video tracking models, namely MPSiam and FSSiamese, are established. Finally, an experimental platform is built to verify the georeferencing correction scheme of video images. The experimental results show that the Multiply-Accumulate value of MPSiam is 0.5B, and that of ResNet50-Siam is 4.5B. Besides, the model is compressed by 4.8 times. The inference speed has increased by 3.3 times, reaching 83 Frames Per Second. 3% of the Average Expectation Overlap is lost. Therefore, the urban Digital Twins-oriented GeoAI framework established here has excellent performance for video georeferencing and target detection problems.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"5 3\",\"pages\":\"Pages 213-231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096579622000936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579622000936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本工作强调了城市数字孪生的研究现状,以建立一个智能时空框架。在地理信息系统和人工智能的基础上,开发了一个地理空间人工智能系统。它集成了多视频技术和城市数字双胞胎中的虚拟城市。此外,提出了一种改进的小目标检测模型:YOLOv5 Pyramid,并建立了暹罗网络视频跟踪模型MPSiam和FSDiames。最后,搭建了一个实验平台,对视频图像的地理参考校正方案进行了验证。实验结果表明,MPSiam的乘法累加值为0.5B,ResNet50Siam的加法累加值为4.5B,并且模型被压缩了4.8倍。推理速度提高了3.3倍,达到每秒83帧。失去了平均期望重叠的3%。因此,本文建立的面向城市数字孪生的GeoAI框架在视频地理参考和目标检测问题上具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatiotemporal Intelligent Framework and Experimental Platform for Urban Digital Twins

This work emphasizes the current research status of the urban Digital Twins to establish an intelligent spatiotemporal framework. A Geospatial Artificial Intelligent (GeoAI) system is developed based on the Geographic Information System and Artificial Intelligence. It integrates multi-video technology and Virtual City in urban Digital Twins. Besides, an improved small object detection model is proposed: YOLOv5-Pyramid, and Siamese network video tracking models, namely MPSiam and FSSiamese, are established. Finally, an experimental platform is built to verify the georeferencing correction scheme of video images. The experimental results show that the Multiply-Accumulate value of MPSiam is 0.5B, and that of ResNet50-Siam is 4.5B. Besides, the model is compressed by 4.8 times. The inference speed has increased by 3.3 times, reaching 83 Frames Per Second. 3% of the Average Expectation Overlap is lost. Therefore, the urban Digital Twins-oriented GeoAI framework established here has excellent performance for video georeferencing and target detection problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信