Shi Han , Yongjian Liu , Yi Lyu , Jiang Liu , Ning Zhang
{"title":"寒冷地区混凝土箱梁水化热温度及早期开裂风险的数值模拟研究","authors":"Shi Han , Yongjian Liu , Yi Lyu , Jiang Liu , Ning Zhang","doi":"10.1016/j.jtte.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The temperature change caused by hydration leads to early-age cracking in concrete box girder. The early-age cracking risk is further improved with low air temperature and large daily temperature difference, especially in Northwest China. To fill this gap, a temperature experiment and numerical simulation were performed on an actual concrete box girder segment in Northwest China. The temperature field, thermal stress and cracking risk were analyzed using evolution curves, distribution curves and contours. The key parameters that influence the hydration heat temperature, including the cement hydration heat release, cement content, height-width ratio of web, initial temperature, convective coefficient of top plate surface, were analyzed. An anti-cracking case based on parameters analysis was put forward. The results indicated that the temperature evolution can be divided into three stages: warming, cooling and environment significantly impacting. Along the thickness of each plate, temperature distributed is single peak in the center. Along the width or height, temperature distributed is double peaks at axillary position for the top and bottom plates, and single peak in center for the web. The axillary position and web have high thermal stress and significant cracking risks. The temperature difference of each plate, and the early-age cracking risk can be reduced by effectively adjusting the key parameters. Among these, the former two parameters are the most significant factors. The maximum cracking risk can be decreased by 15.7% for every 50 kJ/kg hydration heat reduction. The maximum cracking risk can be decreased by 13.1% for every 50 kg/m<sup>3</sup> cement content reduction.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":"10 4","pages":"Pages 697-720"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation investigation on hydration heat temperature and early cracking risk of concrete box girder in cold regions\",\"authors\":\"Shi Han , Yongjian Liu , Yi Lyu , Jiang Liu , Ning Zhang\",\"doi\":\"10.1016/j.jtte.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The temperature change caused by hydration leads to early-age cracking in concrete box girder. The early-age cracking risk is further improved with low air temperature and large daily temperature difference, especially in Northwest China. To fill this gap, a temperature experiment and numerical simulation were performed on an actual concrete box girder segment in Northwest China. The temperature field, thermal stress and cracking risk were analyzed using evolution curves, distribution curves and contours. The key parameters that influence the hydration heat temperature, including the cement hydration heat release, cement content, height-width ratio of web, initial temperature, convective coefficient of top plate surface, were analyzed. An anti-cracking case based on parameters analysis was put forward. The results indicated that the temperature evolution can be divided into three stages: warming, cooling and environment significantly impacting. Along the thickness of each plate, temperature distributed is single peak in the center. Along the width or height, temperature distributed is double peaks at axillary position for the top and bottom plates, and single peak in center for the web. The axillary position and web have high thermal stress and significant cracking risks. The temperature difference of each plate, and the early-age cracking risk can be reduced by effectively adjusting the key parameters. Among these, the former two parameters are the most significant factors. The maximum cracking risk can be decreased by 15.7% for every 50 kJ/kg hydration heat reduction. The maximum cracking risk can be decreased by 13.1% for every 50 kg/m<sup>3</sup> cement content reduction.</p></div>\",\"PeriodicalId\":47239,\"journal\":{\"name\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"volume\":\"10 4\",\"pages\":\"Pages 697-720\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Traffic and Transportation Engineering-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209575642300082X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209575642300082X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical simulation investigation on hydration heat temperature and early cracking risk of concrete box girder in cold regions
The temperature change caused by hydration leads to early-age cracking in concrete box girder. The early-age cracking risk is further improved with low air temperature and large daily temperature difference, especially in Northwest China. To fill this gap, a temperature experiment and numerical simulation were performed on an actual concrete box girder segment in Northwest China. The temperature field, thermal stress and cracking risk were analyzed using evolution curves, distribution curves and contours. The key parameters that influence the hydration heat temperature, including the cement hydration heat release, cement content, height-width ratio of web, initial temperature, convective coefficient of top plate surface, were analyzed. An anti-cracking case based on parameters analysis was put forward. The results indicated that the temperature evolution can be divided into three stages: warming, cooling and environment significantly impacting. Along the thickness of each plate, temperature distributed is single peak in the center. Along the width or height, temperature distributed is double peaks at axillary position for the top and bottom plates, and single peak in center for the web. The axillary position and web have high thermal stress and significant cracking risks. The temperature difference of each plate, and the early-age cracking risk can be reduced by effectively adjusting the key parameters. Among these, the former two parameters are the most significant factors. The maximum cracking risk can be decreased by 15.7% for every 50 kJ/kg hydration heat reduction. The maximum cracking risk can be decreased by 13.1% for every 50 kg/m3 cement content reduction.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.