卷积神经网络在颅脑损伤分类和预后预测中的应用

Laura Zinnel, Sarah A. Bentil
{"title":"卷积神经网络在颅脑损伤分类和预后预测中的应用","authors":"Laura Zinnel,&nbsp;Sarah A. Bentil","doi":"10.1016/j.hsr.2023.100126","DOIUrl":null,"url":null,"abstract":"<div><p>The detection and classification of traumatic brain injury (TBI) by medical professionals can vary due to subjectivity and differences in experience. Thus, a computational approach for detecting and classifying TBI would be invaluable for an objective diagnosis of this injury. In this review paper, various machine learning algorithms used to detect, classify, and predict the severity and outcomes of TBI in a clinical setting are discussed. The most promising of these algorithms is the convolutional neural network (CNN), which is highlighted in the review.</p></div>","PeriodicalId":73214,"journal":{"name":"Health sciences review (Oxford, England)","volume":"9 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional neural networks for traumatic brain injury classification and outcome prediction\",\"authors\":\"Laura Zinnel,&nbsp;Sarah A. Bentil\",\"doi\":\"10.1016/j.hsr.2023.100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The detection and classification of traumatic brain injury (TBI) by medical professionals can vary due to subjectivity and differences in experience. Thus, a computational approach for detecting and classifying TBI would be invaluable for an objective diagnosis of this injury. In this review paper, various machine learning algorithms used to detect, classify, and predict the severity and outcomes of TBI in a clinical setting are discussed. The most promising of these algorithms is the convolutional neural network (CNN), which is highlighted in the review.</p></div>\",\"PeriodicalId\":73214,\"journal\":{\"name\":\"Health sciences review (Oxford, England)\",\"volume\":\"9 \",\"pages\":\"Article 100126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health sciences review (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772632023000521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health sciences review (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772632023000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学专业人员对创伤性脑损伤(TBI)的检测和分类可能因主观性和经验差异而有所不同。因此,检测和分类创伤性脑损伤的计算方法对于这种损伤的客观诊断将是非常宝贵的。在这篇综述文章中,讨论了在临床环境中用于检测、分类和预测TBI严重程度和结果的各种机器学习算法。这些算法中最有前途的是卷积神经网络(CNN),这在综述中得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional neural networks for traumatic brain injury classification and outcome prediction

The detection and classification of traumatic brain injury (TBI) by medical professionals can vary due to subjectivity and differences in experience. Thus, a computational approach for detecting and classifying TBI would be invaluable for an objective diagnosis of this injury. In this review paper, various machine learning algorithms used to detect, classify, and predict the severity and outcomes of TBI in a clinical setting are discussed. The most promising of these algorithms is the convolutional neural network (CNN), which is highlighted in the review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health sciences review (Oxford, England)
Health sciences review (Oxford, England) Medicine and Dentistry (General)
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信