基于半维里消失几何的Rd×T上聚焦能量临界非线性系统的长时间行为

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongming Luo
{"title":"基于半维里消失几何的Rd×T上聚焦能量临界非线性系统的长时间行为","authors":"Yongming Luo","doi":"10.1016/j.matpur.2023.07.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the focusing energy-critical NLS</span><span><span><span>(NLS)</span><span><math><mrow><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mi>u</mi><mo>=</mo><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mi>u</mi></mrow></math></span></span></span> on the waveguide manifold <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>×</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. We reveal the somewhat counterintuitive phenomenon that despite the energy-criticality of the nonlinear potential, the long time dynamics of <span>(NLS)</span> are purely determined by the semivirial-vanishing geometry which possesses an <em>energy-subcritical</em><span> characteristic. As a starting point, we consider a minimization problem </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined on the semivirial-vanishing manifold with prescribed mass <em>c</em><span>. We prove that for all sufficiently large mass the variational problem </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> has a unique optimizer <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> satisfying <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, while for all sufficiently small mass, any optimizer of <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> must have non-trivial <em>y</em>-dependence. Afterwards, we prove that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> characterizes a sharp threshold for the bifurcation of finite time blow-up (<span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>) and globally scattering (<span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>) solutions of <span>(NLS)</span> in dependence of the sign of the semivirial. To the author's knowledge, the paper also gives the first large data scattering result for focusing NLS on product spaces in the energy-critical setting.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On long time behavior of the focusing energy-critical NLS on Rd×T via semivirial-vanishing geometry\",\"authors\":\"Yongming Luo\",\"doi\":\"10.1016/j.matpur.2023.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study the focusing energy-critical NLS</span><span><span><span>(NLS)</span><span><math><mrow><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mi>u</mi><mo>=</mo><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup><mi>u</mi></mrow></math></span></span></span> on the waveguide manifold <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>×</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> with <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. We reveal the somewhat counterintuitive phenomenon that despite the energy-criticality of the nonlinear potential, the long time dynamics of <span>(NLS)</span> are purely determined by the semivirial-vanishing geometry which possesses an <em>energy-subcritical</em><span> characteristic. As a starting point, we consider a minimization problem </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined on the semivirial-vanishing manifold with prescribed mass <em>c</em><span>. We prove that for all sufficiently large mass the variational problem </span><span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> has a unique optimizer <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> satisfying <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>y</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, while for all sufficiently small mass, any optimizer of <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> must have non-trivial <em>y</em>-dependence. Afterwards, we prove that <span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> characterizes a sharp threshold for the bifurcation of finite time blow-up (<span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>) and globally scattering (<span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>) solutions of <span>(NLS)</span> in dependence of the sign of the semivirial. To the author's knowledge, the paper also gives the first large data scattering result for focusing NLS on product spaces in the energy-critical setting.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了d≥2的波导流形Rxd×Ty上的聚焦能量临界NLS(NLS)iõtu+Δx,yu=−|u|4d−1u。我们揭示了一个有点违反直觉的现象,即尽管非线性势具有能量临界性,但(NLS)的长时间动力学完全由具有能量亚临界特性的半维里消失几何决定。作为一个起点,我们考虑了一个定义在具有指定质量c的半维里消失流形上的最小化问题mc。我们证明了对于所有足够大的质量,变分问题mc都有一个唯一的优化器uc,满足Şyuc=0,而对于所有足够小的质量,mc的任何优化器都必须具有非平凡的y依赖性。然后,我们证明了mc表征了(NLS)的有限时间爆破(d=2,3)和全局散射(d=3)解的分岔的一个尖锐阈值,该阈值依赖于半维里的符号。据作者所知,本文还给出了在能量临界环境下将NLS聚焦于乘积空间的第一个大数据散射结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On long time behavior of the focusing energy-critical NLS on Rd×T via semivirial-vanishing geometry

We study the focusing energy-critical NLS(NLS)itu+Δx,yu=|u|4d1u on the waveguide manifold Rxd×Ty with d2. We reveal the somewhat counterintuitive phenomenon that despite the energy-criticality of the nonlinear potential, the long time dynamics of (NLS) are purely determined by the semivirial-vanishing geometry which possesses an energy-subcritical characteristic. As a starting point, we consider a minimization problem mc defined on the semivirial-vanishing manifold with prescribed mass c. We prove that for all sufficiently large mass the variational problem mc has a unique optimizer uc satisfying yuc=0, while for all sufficiently small mass, any optimizer of mc must have non-trivial y-dependence. Afterwards, we prove that mc characterizes a sharp threshold for the bifurcation of finite time blow-up (d=2,3) and globally scattering (d=3) solutions of (NLS) in dependence of the sign of the semivirial. To the author's knowledge, the paper also gives the first large data scattering result for focusing NLS on product spaces in the energy-critical setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信