{"title":"ZmCCT10启动子的一个差异甲基化区域对杂交玉米开花时间的影响","authors":"Zhiqiang Zhou , Xin Lu , Chaoshu Zhang, Mingshun Li, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jienan Han, Xinhai Li, Jianfeng Weng","doi":"10.1016/j.cj.2023.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>Flowering time (FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits <em>per se</em>, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328 Ye478 × Qi319 recombinant inbred lines (RILs). We identified 11 quantitative trait loci (QTL) for hybrid performance in FT-related traits, including a major QTL <em>qFH10</em> that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits <em>per se</em> only in a spring maize-growing region. We validated <em>ZmCCT10</em> as a candidate gene for <em>qFH10</em> and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region (DMR, –700 to –1520) of the <em>ZmCCT10</em> promoter affected gene expression pattern and thereby FT in the summer maize-growing region.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 5","pages":"Pages 1380-1389"},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A differentially methylated region of the ZmCCT10 promoter affects flowering time in hybrid maize\",\"authors\":\"Zhiqiang Zhou , Xin Lu , Chaoshu Zhang, Mingshun Li, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jienan Han, Xinhai Li, Jianfeng Weng\",\"doi\":\"10.1016/j.cj.2023.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flowering time (FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits <em>per se</em>, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328 Ye478 × Qi319 recombinant inbred lines (RILs). We identified 11 quantitative trait loci (QTL) for hybrid performance in FT-related traits, including a major QTL <em>qFH10</em> that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits <em>per se</em> only in a spring maize-growing region. We validated <em>ZmCCT10</em> as a candidate gene for <em>qFH10</em> and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region (DMR, –700 to –1520) of the <em>ZmCCT10</em> promoter affected gene expression pattern and thereby FT in the summer maize-growing region.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 5\",\"pages\":\"Pages 1380-1389\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221451412300079X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221451412300079X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
A differentially methylated region of the ZmCCT10 promoter affects flowering time in hybrid maize
Flowering time (FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits per se, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328 Ye478 × Qi319 recombinant inbred lines (RILs). We identified 11 quantitative trait loci (QTL) for hybrid performance in FT-related traits, including a major QTL qFH10 that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits per se only in a spring maize-growing region. We validated ZmCCT10 as a candidate gene for qFH10 and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region (DMR, –700 to –1520) of the ZmCCT10 promoter affected gene expression pattern and thereby FT in the summer maize-growing region.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.