Feifei Ma , Ranzhe Li , Guanghui Guo, Fang Nie, Lele Zhu, Wenjuan Liu, Linlin Lyu, Shenglong Bai, Xinpeng Zhao, Zheng Li, Dale Zhang, Hao Li, Suoping Li, Yun Zhou, Chun-Peng Song
{"title":"灰山羊草QTL导入提高普通小麦产量相关性状的研究","authors":"Feifei Ma , Ranzhe Li , Guanghui Guo, Fang Nie, Lele Zhu, Wenjuan Liu, Linlin Lyu, Shenglong Bai, Xinpeng Zhao, Zheng Li, Dale Zhang, Hao Li, Suoping Li, Yun Zhou, Chun-Peng Song","doi":"10.1016/j.cj.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>To break the narrow diversity bottleneck of the wheat D genome, a set of <em>Aegilops tauschii</em>-wheat introgression (A-WI) lines was developed by crossing <em>Ae. tauschii</em> accession T015 with common wheat elite cultivar Zhoumai 18 (Zhou18). A high-density genetic map was constructed based on Single Nucleotide Polymorphism (SNP) markers and 15 yield-related traits were evaluated in 11 environments for detecting quantitative trait loci (QTL). A total of 27 environmentally stable QTL were identified in at least five environments, 20 of which were derived from <em>Ae. tauschii</em> T015, explaining up to 24.27% of the phenotypic variations. The major QTL for kernel length (KL), <em>QKl-2D.5</em>, was delimited to a physical interval of approximately 2.6 Mb harboring 52 candidate genes. Three Kompetitive Allele Specific PCR (KASP) markers were successfully developed based on nonsynonymous nucleotide mutations of candidate gene <em>AetT093_2Dv1G100900.1</em> and showed that A-WI lines with the T015 haplotype had significantly longer KL than the Zhou18 haplotype across all 11 environments. Four primary valuable A-WIs with good trait performance and carrying yield-related QTL were selected for breeding improvement. The results will facilitate the efficient transfer of beneficial genes from <em>Ae. tauschii</em> into wheat cultivars to improve wheat yield and other traits.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 5","pages":"Pages 1521-1532"},"PeriodicalIF":6.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat\",\"authors\":\"Feifei Ma , Ranzhe Li , Guanghui Guo, Fang Nie, Lele Zhu, Wenjuan Liu, Linlin Lyu, Shenglong Bai, Xinpeng Zhao, Zheng Li, Dale Zhang, Hao Li, Suoping Li, Yun Zhou, Chun-Peng Song\",\"doi\":\"10.1016/j.cj.2023.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To break the narrow diversity bottleneck of the wheat D genome, a set of <em>Aegilops tauschii</em>-wheat introgression (A-WI) lines was developed by crossing <em>Ae. tauschii</em> accession T015 with common wheat elite cultivar Zhoumai 18 (Zhou18). A high-density genetic map was constructed based on Single Nucleotide Polymorphism (SNP) markers and 15 yield-related traits were evaluated in 11 environments for detecting quantitative trait loci (QTL). A total of 27 environmentally stable QTL were identified in at least five environments, 20 of which were derived from <em>Ae. tauschii</em> T015, explaining up to 24.27% of the phenotypic variations. The major QTL for kernel length (KL), <em>QKl-2D.5</em>, was delimited to a physical interval of approximately 2.6 Mb harboring 52 candidate genes. Three Kompetitive Allele Specific PCR (KASP) markers were successfully developed based on nonsynonymous nucleotide mutations of candidate gene <em>AetT093_2Dv1G100900.1</em> and showed that A-WI lines with the T015 haplotype had significantly longer KL than the Zhou18 haplotype across all 11 environments. Four primary valuable A-WIs with good trait performance and carrying yield-related QTL were selected for breeding improvement. The results will facilitate the efficient transfer of beneficial genes from <em>Ae. tauschii</em> into wheat cultivars to improve wheat yield and other traits.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 5\",\"pages\":\"Pages 1521-1532\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123000545\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000545","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Introgression of QTL from Aegilops tauschii enhances yield-related traits in common wheat
To break the narrow diversity bottleneck of the wheat D genome, a set of Aegilops tauschii-wheat introgression (A-WI) lines was developed by crossing Ae. tauschii accession T015 with common wheat elite cultivar Zhoumai 18 (Zhou18). A high-density genetic map was constructed based on Single Nucleotide Polymorphism (SNP) markers and 15 yield-related traits were evaluated in 11 environments for detecting quantitative trait loci (QTL). A total of 27 environmentally stable QTL were identified in at least five environments, 20 of which were derived from Ae. tauschii T015, explaining up to 24.27% of the phenotypic variations. The major QTL for kernel length (KL), QKl-2D.5, was delimited to a physical interval of approximately 2.6 Mb harboring 52 candidate genes. Three Kompetitive Allele Specific PCR (KASP) markers were successfully developed based on nonsynonymous nucleotide mutations of candidate gene AetT093_2Dv1G100900.1 and showed that A-WI lines with the T015 haplotype had significantly longer KL than the Zhou18 haplotype across all 11 environments. Four primary valuable A-WIs with good trait performance and carrying yield-related QTL were selected for breeding improvement. The results will facilitate the efficient transfer of beneficial genes from Ae. tauschii into wheat cultivars to improve wheat yield and other traits.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.