Navid Bavi , Charles D Cox , Yury A Nikolaev , Boris Martinac
{"title":"机械敏感通道中脂质力门控的分子洞察","authors":"Navid Bavi , Charles D Cox , Yury A Nikolaev , Boris Martinac","doi":"10.1016/j.cophys.2023.100706","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-established that mechanosensitive (MS) ion channels differentially respond to membrane tension, bilayer thinning, and curvature. The thesis that the lipid bilayer acted as the terminal transducer of force directly to the channel became known as the force-from-lipids gating paradigm (also less frequently referred to as the ‘bilayer model’). This principle allows cells to detect and respond to mechanical forces in their environment, which is important for various physiological processes, including blood pressure regulation, touch sensation, and many others. Our understanding of how mechanical force drives MS channel gating has been greatly enhanced by new insights into the molecular interactions between the lipid bilayer and channel proteins. In this short review, we revisit the role of the force-from-lipids principle within the current understanding of MS channel gating and focus on its molecular underpinnings.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"36 ","pages":"Article 100706"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular insights into the force-from-lipids gating of mechanosensitive channels\",\"authors\":\"Navid Bavi , Charles D Cox , Yury A Nikolaev , Boris Martinac\",\"doi\":\"10.1016/j.cophys.2023.100706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well-established that mechanosensitive (MS) ion channels differentially respond to membrane tension, bilayer thinning, and curvature. The thesis that the lipid bilayer acted as the terminal transducer of force directly to the channel became known as the force-from-lipids gating paradigm (also less frequently referred to as the ‘bilayer model’). This principle allows cells to detect and respond to mechanical forces in their environment, which is important for various physiological processes, including blood pressure regulation, touch sensation, and many others. Our understanding of how mechanical force drives MS channel gating has been greatly enhanced by new insights into the molecular interactions between the lipid bilayer and channel proteins. In this short review, we revisit the role of the force-from-lipids principle within the current understanding of MS channel gating and focus on its molecular underpinnings.</p></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"36 \",\"pages\":\"Article 100706\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867323000767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867323000767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Molecular insights into the force-from-lipids gating of mechanosensitive channels
It is well-established that mechanosensitive (MS) ion channels differentially respond to membrane tension, bilayer thinning, and curvature. The thesis that the lipid bilayer acted as the terminal transducer of force directly to the channel became known as the force-from-lipids gating paradigm (also less frequently referred to as the ‘bilayer model’). This principle allows cells to detect and respond to mechanical forces in their environment, which is important for various physiological processes, including blood pressure regulation, touch sensation, and many others. Our understanding of how mechanical force drives MS channel gating has been greatly enhanced by new insights into the molecular interactions between the lipid bilayer and channel proteins. In this short review, we revisit the role of the force-from-lipids principle within the current understanding of MS channel gating and focus on its molecular underpinnings.