图表自动编码器对内在数据结构的深度非参数估计:泛化误差和稳健性

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Hao Liu , Alex Havrilla , Rongjie Lai , Wenjing Liao
{"title":"图表自动编码器对内在数据结构的深度非参数估计:泛化误差和稳健性","authors":"Hao Liu ,&nbsp;Alex Havrilla ,&nbsp;Rongjie Lai ,&nbsp;Wenjing Liao","doi":"10.1016/j.acha.2023.101602","DOIUrl":null,"url":null,"abstract":"<div><p>Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering <em>n</em> noisy training samples, along with their noise-free counterparts, on a <em>d</em>-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101602"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness\",\"authors\":\"Hao Liu ,&nbsp;Alex Havrilla ,&nbsp;Rongjie Lai ,&nbsp;Wenjing Liao\",\"doi\":\"10.1016/j.acha.2023.101602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering <em>n</em> noisy training samples, along with their noise-free counterparts, on a <em>d</em>-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101602\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000891\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000891","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

自动编码器在各种应用中学习高维数据的低维潜在特征方面取得了显著成功。假设数据是在低维流形附近采样的,我们使用图表自动编码器,将数据编码为图表集合上的低维潜在特征,从而保留数据流形的拓扑和几何结构。我们的论文建立了图表自动编码器泛化误差的统计保证,并通过在d维流形上考虑n个有噪声的训练样本及其无噪声对应样本来证明其去噪能力。通过对自动编码器的训练,我们证明了图表自动编码器可以有效地对具有正态噪声的输入数据进行去噪。我们证明,在适当的网络架构下,图表自动编码器实现了n−2d+2log4量级的平方泛化误差⁡n、 其取决于流形的固有维度,并且仅弱地取决于环境维度和噪声水平。我们进一步扩展了我们关于噪声同时包含法向分量和切向分量的数据的理论,其中图表自动编码器仍然对法向分量表现出去噪效果。作为一种特殊情况,只要数据流形具有全局参数化,我们的理论也适用于经典的自动编码器。我们的结果为自动编码器的有效性提供了坚实的理论基础,并通过几个数值实验得到了进一步的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep nonparametric estimation of intrinsic data structures by chart autoencoders: Generalization error and robustness

Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering n noisy training samples, along with their noise-free counterparts, on a d-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of n2d+2log4n, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信