利用airscan超分辨显微镜和生物正交化学研究植物细胞壁木质素化的复杂性

Clémence Simon, Oriane Morel, Godfrey Neutelings, Fabien Baldacci-Cresp, Marie Baucher, Corentin Spriet, Christophe Biot, Simon Hawkins and Cédric Lion*, 
{"title":"利用airscan超分辨显微镜和生物正交化学研究植物细胞壁木质素化的复杂性","authors":"Clémence Simon,&nbsp;Oriane Morel,&nbsp;Godfrey Neutelings,&nbsp;Fabien Baldacci-Cresp,&nbsp;Marie Baucher,&nbsp;Corentin Spriet,&nbsp;Christophe Biot,&nbsp;Simon Hawkins and Cédric Lion*,&nbsp;","doi":"10.1021/cbmi.3c00052","DOIUrl":null,"url":null,"abstract":"<p >In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels–Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00052","citationCount":"1","resultStr":"{\"title\":\"Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry\",\"authors\":\"Clémence Simon,&nbsp;Oriane Morel,&nbsp;Godfrey Neutelings,&nbsp;Fabien Baldacci-Cresp,&nbsp;Marie Baucher,&nbsp;Corentin Spriet,&nbsp;Christophe Biot,&nbsp;Simon Hawkins and Cédric Lion*,&nbsp;\",\"doi\":\"10.1021/cbmi.3c00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels–Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00052\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了将多重点击/生物正交化学与超分辨率Airyscan显微镜相结合来跟踪生命系统中的生物分子,重点研究植物细胞壁中木质素的形成。虽然在我们之前的报告中,激光扫描共聚焦显微镜(LSCM)深入了解了木质素形成和分布的组织尺度动力学,但其有限的分辨率阻碍了在独特的细胞壁或亚结构水平上深入分析木质素组成。为了克服这一限制,我们探索了Airyscan显微镜的使用,在现有的超分辨率技术中,它在性能、成本、可访问性和易于实现之间提供了最佳平衡。我们的研究表明,使用铜催化的叠氮化物-炔烃环加成(CuAAC)、菌株促进的叠氮化物–炔烃环加成(SPAAC)、,和反向电子需求Diels–Alder环加成(IEDDA)标记改性木质素代谢前体可以与Airyscan显微镜相结合,以提高灵敏度和分辨率,在单细胞水平上揭示活性木质化区域。这种方法能够深入了解壁亚结构中的木质素成分,如凹坑或壁层中的木质素组分,否则经典LSCM无法区分。我们的工作强调了研究植物细胞壁中木质素形成的重要性,并展示了将生物正交化学和超分辨率显微镜技术相结合研究生命系统中生物分子的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry

Exploring Lignification Complexity in Plant Cell Walls with Airyscan Super-resolution Microscopy and Bioorthogonal Chemistry

In this paper, we present the use of multiplex click/bioorthogonal chemistry combined with super-resolution Airyscan microscopy to track biomolecules in living systems with a focus on studying lignin formation in plant cell walls. While laser scanning confocal microscopy (LSCM) provided insights into the tissue-scale dynamics of lignin formation and distribution in our previous reports, its limited resolution precluded an in-depth analysis of lignin composition at the unique cell wall or substructure level. To overcome this limitation, we explored the use of Airyscan microscopy, which, among the super-resolution techniques available, offers an optimal balance between performance, cost, accessibility, and ease of implementation. Our study demonstrates that a triple labeling strategy using copper-catalyzed azide–alkyne cycloaddition (CuAAC), strain-promoted azide–alkyne cycloaddition (SPAAC), and inverse electronic-demand Diels–Alder cycloaddition (IEDDA) to label modified lignin metabolic precursors can be combined with Airyscan microscopy to reveal the zones of active lignification at the single cell level with improved sensitivity and resolution. This approach enables insights into the lignin composition in wall substructures, such as pits or in wall layers that are otherwise not distinguishable by classical LSCM. Our work emphasizes the importance of studying lignin formation in plant cell walls and demonstrates the potential of combining bioorthogonal chemistry and super-resolution microscopy techniques for studying biomolecules in living systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信