有机-无机杂化异质结增强二硫化钼的发射

Si-Wei Zhang, Fulong Ma, Jinhui Jiang, Zaiyu Wang, Zijie Qiu, Jacky W. Y. Lam, Guodan Wei*, Zheng Zhao* and Ben Zhong Tang*, 
{"title":"有机-无机杂化异质结增强二硫化钼的发射","authors":"Si-Wei Zhang,&nbsp;Fulong Ma,&nbsp;Jinhui Jiang,&nbsp;Zaiyu Wang,&nbsp;Zijie Qiu,&nbsp;Jacky W. Y. Lam,&nbsp;Guodan Wei*,&nbsp;Zheng Zhao* and Ben Zhong Tang*,&nbsp;","doi":"10.1021/prechem.3c00067","DOIUrl":null,"url":null,"abstract":"<p >Due to their excellent stability and layer-dependent photoelectronic properties, transition metal dichalcogenides (TMDs) are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era. However, its low luminescence quantum yield limits its application in displays, lighting, and imaging. Here, a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) layer was grown on the surface of chemical vapor deposition (CVD)-grown monolayer molybdenum disulfide (MoS<sub>2</sub>) by vacuum evaporation, which increased the photoluminescence intensity of MoS<sub>2</sub> by 15 times. The enhanced luminescence originates from the charge transfer from the conduction band of MoS<sub>2</sub> to the lowest unoccupied molecular orbital (LUMO) of HATCN, which suppresses the emission of the negatively charged exciton (trion) while increasing the emission of the neutral exciton. Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic–inorganic hybrid heterojunctions for regulating excitons. This facile and practical organic–inorganic hybrid heterojunction can elevate TMD applications, such as light-emitting diodes.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"1 6","pages":"357–362"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00067","citationCount":"0","resultStr":"{\"title\":\"Enhanced Emission of Molybdenum Disulfide by Organic–Inorganic Hybrid Heterojunctions\",\"authors\":\"Si-Wei Zhang,&nbsp;Fulong Ma,&nbsp;Jinhui Jiang,&nbsp;Zaiyu Wang,&nbsp;Zijie Qiu,&nbsp;Jacky W. Y. Lam,&nbsp;Guodan Wei*,&nbsp;Zheng Zhao* and Ben Zhong Tang*,&nbsp;\",\"doi\":\"10.1021/prechem.3c00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to their excellent stability and layer-dependent photoelectronic properties, transition metal dichalcogenides (TMDs) are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era. However, its low luminescence quantum yield limits its application in displays, lighting, and imaging. Here, a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) layer was grown on the surface of chemical vapor deposition (CVD)-grown monolayer molybdenum disulfide (MoS<sub>2</sub>) by vacuum evaporation, which increased the photoluminescence intensity of MoS<sub>2</sub> by 15 times. The enhanced luminescence originates from the charge transfer from the conduction band of MoS<sub>2</sub> to the lowest unoccupied molecular orbital (LUMO) of HATCN, which suppresses the emission of the negatively charged exciton (trion) while increasing the emission of the neutral exciton. Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic–inorganic hybrid heterojunctions for regulating excitons. This facile and practical organic–inorganic hybrid heterojunction can elevate TMD applications, such as light-emitting diodes.</p>\",\"PeriodicalId\":29793,\"journal\":{\"name\":\"Precision Chemistry\",\"volume\":\"1 6\",\"pages\":\"357–362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/prechem.3c00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.3c00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属二硫族化合物(TMDs)由于其优异的稳定性和依赖于层的光电子性质,是后石墨烯时代研究最广泛的二维半导体材料之一。然而,其低发光量子产率限制了其在显示器、照明和成像中的应用。本文通过真空蒸发在化学气相沉积(CVD)生长的单层二硫化钼(MoS2)表面生长了1,4,5,8,9,11-六氮杂三苯基六腈(HATCN)层,使MoS2的光致发光强度提高了15倍。增强的发光源于从MoS2的导带到HATCN的最低未占分子轨道(LUMO)的电荷转移,这抑制了带负电荷的激子(trion)的发射,同时增加了中性激子的发射。依赖温度的荧光和拉曼光谱证明了有机-无机杂化异质结调节激子的可行性。这种简单实用的有机-无机混合异质结可以提升TMD的应用,如发光二极管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Emission of Molybdenum Disulfide by Organic–Inorganic Hybrid Heterojunctions

Enhanced Emission of Molybdenum Disulfide by Organic–Inorganic Hybrid Heterojunctions

Due to their excellent stability and layer-dependent photoelectronic properties, transition metal dichalcogenides (TMDs) are one of the most extensively studied two-dimensional semiconductor materials in the postgraphene era. However, its low luminescence quantum yield limits its application in displays, lighting, and imaging. Here, a 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HATCN) layer was grown on the surface of chemical vapor deposition (CVD)-grown monolayer molybdenum disulfide (MoS2) by vacuum evaporation, which increased the photoluminescence intensity of MoS2 by 15 times. The enhanced luminescence originates from the charge transfer from the conduction band of MoS2 to the lowest unoccupied molecular orbital (LUMO) of HATCN, which suppresses the emission of the negatively charged exciton (trion) while increasing the emission of the neutral exciton. Temperature-dependent fluorescence and Raman spectra demonstrate the feasibility of organic–inorganic hybrid heterojunctions for regulating excitons. This facile and practical organic–inorganic hybrid heterojunction can elevate TMD applications, such as light-emitting diodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信