控制多智能体系统的部分集中模型预测平均场对策

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Daisuke Inoue , Yuji Ito , Takahito Kashiwabara , Norikazu Saito , Hiroaki Yoshida
{"title":"控制多智能体系统的部分集中模型预测平均场对策","authors":"Daisuke Inoue ,&nbsp;Yuji Ito ,&nbsp;Takahito Kashiwabara ,&nbsp;Norikazu Saito ,&nbsp;Hiroaki Yoshida","doi":"10.1016/j.ifacsc.2023.100217","DOIUrl":null,"url":null,"abstract":"<div><p>Fast, high-performance control of large Multi-Agent Systems (MASs) is a major challenge. We address this problem using Mean Field Games (MFGs), which deduce the macroscopic dynamics of the density distribution of the agent population from the microscopic dynamics of each agent. To control MASs using the MFG, two main problems need to be solved: preventing control performance degradation caused by distribution estimation errors and ensuring the scalability of communication. To overcome these issues, we develop a new control method called the <em>Partially Centralized Model-Predictive MFG (PCMP-MFG)</em>. The proposed method solves the first issue by repeating distribution estimation and model-predictive control at each time; it solves the second by introducing broadcast control. Our numerical results show that the proposed PCMP-MFG method outperforms the conventional MFG-based method in a wide parameter range.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"24 ","pages":"Article 100217"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially Centralized Model-Predictive Mean Field Games for controlling multi-agent systems\",\"authors\":\"Daisuke Inoue ,&nbsp;Yuji Ito ,&nbsp;Takahito Kashiwabara ,&nbsp;Norikazu Saito ,&nbsp;Hiroaki Yoshida\",\"doi\":\"10.1016/j.ifacsc.2023.100217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fast, high-performance control of large Multi-Agent Systems (MASs) is a major challenge. We address this problem using Mean Field Games (MFGs), which deduce the macroscopic dynamics of the density distribution of the agent population from the microscopic dynamics of each agent. To control MASs using the MFG, two main problems need to be solved: preventing control performance degradation caused by distribution estimation errors and ensuring the scalability of communication. To overcome these issues, we develop a new control method called the <em>Partially Centralized Model-Predictive MFG (PCMP-MFG)</em>. The proposed method solves the first issue by repeating distribution estimation and model-predictive control at each time; it solves the second by introducing broadcast control. Our numerical results show that the proposed PCMP-MFG method outperforms the conventional MFG-based method in a wide parameter range.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"24 \",\"pages\":\"Article 100217\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601823000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601823000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

大型多代理系统(MAS)的快速、高性能控制是一个重大挑战。我们使用平均场对策(MFG)来解决这个问题,该对策从每个代理的微观动力学中推导出代理种群密度分布的宏观动力学。要使用MFG控制MAS,需要解决两个主要问题:防止分布估计误差导致的控制性能下降和确保通信的可扩展性。为了克服这些问题,我们开发了一种新的控制方法,称为部分集中模型预测MFG(PCMP-MFG)。所提出的方法通过每次重复分布估计和模型预测控制来解决第一个问题;它通过引入广播控制来解决第二个问题。数值结果表明,所提出的PCMP-MFG方法在较宽的参数范围内优于传统的基于MFG的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partially Centralized Model-Predictive Mean Field Games for controlling multi-agent systems

Fast, high-performance control of large Multi-Agent Systems (MASs) is a major challenge. We address this problem using Mean Field Games (MFGs), which deduce the macroscopic dynamics of the density distribution of the agent population from the microscopic dynamics of each agent. To control MASs using the MFG, two main problems need to be solved: preventing control performance degradation caused by distribution estimation errors and ensuring the scalability of communication. To overcome these issues, we develop a new control method called the Partially Centralized Model-Predictive MFG (PCMP-MFG). The proposed method solves the first issue by repeating distribution estimation and model-predictive control at each time; it solves the second by introducing broadcast control. Our numerical results show that the proposed PCMP-MFG method outperforms the conventional MFG-based method in a wide parameter range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信