具有混合符号的二分3-正则计数问题

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Jin-Yi Cai, Austen Z. Fan, Yin Liu
{"title":"具有混合符号的二分3-正则计数问题","authors":"Jin-Yi Cai,&nbsp;Austen Z. Fan,&nbsp;Yin Liu","doi":"10.1016/j.jcss.2023.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>We prove a complexity dichotomy for a class of counting problems expressible as bipartite 3-regular Holant problems. These are also counting CSP problems where every constraint has arity 3 and every variable is read-thrice. For every problem of the form <span><math><mi>Holant</mi><mspace></mspace><mrow><mo>(</mo><mi>f</mi><mo>|</mo><msub><mrow><mo>=</mo></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></math></span>, where <em>f</em> is any integer (or equivalently, rational)-valued ternary symmetric constraint function on Boolean variables, we prove that it is either P-time computable or #P-hard, depending on an explicit criterion of <em>f</em>. The constraint function can take both positive and negative values, allowing for cancellations. In addition, we discover a new phenomenon: there is a set <span><math><mi>F</mi></math></span> with the property that for every <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> the problem <span><math><mi>Holant</mi><mspace></mspace><mrow><mo>(</mo><mi>f</mi><mo>|</mo><msub><mrow><mo>=</mo></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></math></span> is planar P-time computable but #P-hard in general, yet its planar tractability is by a <em>combination</em> of a holographic transformation by <span><math><mo>[</mo><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr></mtable><mo>]</mo></math></span> to FKT <em>together</em> with an independent global argument.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"135 ","pages":"Pages 15-31"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite 3-regular counting problems with mixed signs\",\"authors\":\"Jin-Yi Cai,&nbsp;Austen Z. Fan,&nbsp;Yin Liu\",\"doi\":\"10.1016/j.jcss.2023.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove a complexity dichotomy for a class of counting problems expressible as bipartite 3-regular Holant problems. These are also counting CSP problems where every constraint has arity 3 and every variable is read-thrice. For every problem of the form <span><math><mi>Holant</mi><mspace></mspace><mrow><mo>(</mo><mi>f</mi><mo>|</mo><msub><mrow><mo>=</mo></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></math></span>, where <em>f</em> is any integer (or equivalently, rational)-valued ternary symmetric constraint function on Boolean variables, we prove that it is either P-time computable or #P-hard, depending on an explicit criterion of <em>f</em>. The constraint function can take both positive and negative values, allowing for cancellations. In addition, we discover a new phenomenon: there is a set <span><math><mi>F</mi></math></span> with the property that for every <span><math><mi>f</mi><mo>∈</mo><mi>F</mi></math></span> the problem <span><math><mi>Holant</mi><mspace></mspace><mrow><mo>(</mo><mi>f</mi><mo>|</mo><msub><mrow><mo>=</mo></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow></math></span> is planar P-time computable but #P-hard in general, yet its planar tractability is by a <em>combination</em> of a holographic transformation by <span><math><mo>[</mo><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr></mtable><mo>]</mo></math></span> to FKT <em>together</em> with an independent global argument.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"135 \",\"pages\":\"Pages 15-31\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000144\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000144","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一类可表示为二分3-正则Holant问题的计数问题的复杂性二分法。这些还包括CSP问题,其中每个约束具有arity 3,并且每个变量读取三次。对于形式为Holant(f|=3)的每一个问题,其中f是布尔变量上的任何整数(或等价地,有理)值三元对称约束函数,我们证明它是P-时间可计算的或#P-硬的,这取决于f的显式标准。约束函数可以取正值和负值,允许消去。此外,我们还发现了一个新的现象:存在一个集合F,其性质是,对于每个F∈F,问题Holant(F|=3)是平面P时间可计算的,但通常是#P困难的,但其平面可处理性是由[111−1]到FKT的全息变换与独立的全局自变量相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bipartite 3-regular counting problems with mixed signs

We prove a complexity dichotomy for a class of counting problems expressible as bipartite 3-regular Holant problems. These are also counting CSP problems where every constraint has arity 3 and every variable is read-thrice. For every problem of the form Holant(f|=3), where f is any integer (or equivalently, rational)-valued ternary symmetric constraint function on Boolean variables, we prove that it is either P-time computable or #P-hard, depending on an explicit criterion of f. The constraint function can take both positive and negative values, allowing for cancellations. In addition, we discover a new phenomenon: there is a set F with the property that for every fF the problem Holant(f|=3) is planar P-time computable but #P-hard in general, yet its planar tractability is by a combination of a holographic transformation by [1111] to FKT together with an independent global argument.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信