He Lyu , Fanxin Xu , Tao Jin , Siyi Zheng , Chenchen Zhou , Yang Cao , Bin Luo , Qinzhen Huang , Wei Xiang , Dong Li
{"title":"多类尿液沉淀物颗粒的自动检测:一种精确的深度学习方法","authors":"He Lyu , Fanxin Xu , Tao Jin , Siyi Zheng , Chenchen Zhou , Yang Cao , Bin Luo , Qinzhen Huang , Wei Xiang , Dong Li","doi":"10.1016/j.bbe.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Urine microscopy is an essential diagnostic tool for kidney and urinary tract diseases, with automated analysis of urinary sediment particles improving diagnostic efficiency. However, some urinary sediment particles remain challenging to identify due to individual variations, blurred boundaries, and unbalanced samples. This research aims to mitigate the adverse effects of urine sediment particles while improving multi-class detection performance. We proposed an innovative model based on improved YOLOX for detecting urine sediment particles (YUS-Net). The combination of urine sediment data augmentation and overall pre-trained weights enhances model optimization potential. Furthermore, we incorporate the attention module into the critical feature transfer path and employ a novel loss function, Varifocal loss, to facilitate the extraction of discriminative features, which assists in the identification of densely distributed small objects. Based on the USE dataset, YUS-Net achieves the mean Average Precision (mAP) of 96.07%, 99.35% average precision, and 96.77% average recall, with a latency of 26.13 ms per image. The specific metrics for each category are as follows: cast: 99.66% AP; cryst: 100% AP; epith: 92.31% AP; epithn: 100% AP; eryth: 92.31% AP; leuko: 99.90% AP; mycete: 99.96% AP. With a practical network structure, YUS-Net achieved efficient, accurate, end-to-end urinary sediment particle detection. The model takes native high-resolution images as input without additional steps. Finally, a data augmentation strategy appropriate for the urinary microscopic image domain is established, which provides a novel approach for applying other methods in urine microscopic images.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 4","pages":"Pages 672-683"},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated detection of multi-class urinary sediment particles: An accurate deep learning approach\",\"authors\":\"He Lyu , Fanxin Xu , Tao Jin , Siyi Zheng , Chenchen Zhou , Yang Cao , Bin Luo , Qinzhen Huang , Wei Xiang , Dong Li\",\"doi\":\"10.1016/j.bbe.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urine microscopy is an essential diagnostic tool for kidney and urinary tract diseases, with automated analysis of urinary sediment particles improving diagnostic efficiency. However, some urinary sediment particles remain challenging to identify due to individual variations, blurred boundaries, and unbalanced samples. This research aims to mitigate the adverse effects of urine sediment particles while improving multi-class detection performance. We proposed an innovative model based on improved YOLOX for detecting urine sediment particles (YUS-Net). The combination of urine sediment data augmentation and overall pre-trained weights enhances model optimization potential. Furthermore, we incorporate the attention module into the critical feature transfer path and employ a novel loss function, Varifocal loss, to facilitate the extraction of discriminative features, which assists in the identification of densely distributed small objects. Based on the USE dataset, YUS-Net achieves the mean Average Precision (mAP) of 96.07%, 99.35% average precision, and 96.77% average recall, with a latency of 26.13 ms per image. The specific metrics for each category are as follows: cast: 99.66% AP; cryst: 100% AP; epith: 92.31% AP; epithn: 100% AP; eryth: 92.31% AP; leuko: 99.90% AP; mycete: 99.96% AP. With a practical network structure, YUS-Net achieved efficient, accurate, end-to-end urinary sediment particle detection. The model takes native high-resolution images as input without additional steps. Finally, a data augmentation strategy appropriate for the urinary microscopic image domain is established, which provides a novel approach for applying other methods in urine microscopic images.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"43 4\",\"pages\":\"Pages 672-683\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000542\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000542","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Automated detection of multi-class urinary sediment particles: An accurate deep learning approach
Urine microscopy is an essential diagnostic tool for kidney and urinary tract diseases, with automated analysis of urinary sediment particles improving diagnostic efficiency. However, some urinary sediment particles remain challenging to identify due to individual variations, blurred boundaries, and unbalanced samples. This research aims to mitigate the adverse effects of urine sediment particles while improving multi-class detection performance. We proposed an innovative model based on improved YOLOX for detecting urine sediment particles (YUS-Net). The combination of urine sediment data augmentation and overall pre-trained weights enhances model optimization potential. Furthermore, we incorporate the attention module into the critical feature transfer path and employ a novel loss function, Varifocal loss, to facilitate the extraction of discriminative features, which assists in the identification of densely distributed small objects. Based on the USE dataset, YUS-Net achieves the mean Average Precision (mAP) of 96.07%, 99.35% average precision, and 96.77% average recall, with a latency of 26.13 ms per image. The specific metrics for each category are as follows: cast: 99.66% AP; cryst: 100% AP; epith: 92.31% AP; epithn: 100% AP; eryth: 92.31% AP; leuko: 99.90% AP; mycete: 99.96% AP. With a practical network structure, YUS-Net achieved efficient, accurate, end-to-end urinary sediment particle detection. The model takes native high-resolution images as input without additional steps. Finally, a data augmentation strategy appropriate for the urinary microscopic image domain is established, which provides a novel approach for applying other methods in urine microscopic images.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.