Diego Conti , Alessandro Ghigi , Roberto Pignatelli
{"title":"作用在曲线上的拓扑类型","authors":"Diego Conti , Alessandro Ghigi , Roberto Pignatelli","doi":"10.1016/j.jsc.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>We describe an algorithm that constructs a list of all topological types of holomorphic actions of a finite group on a compact Riemann surface <em>C</em> of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span> with <span><math><mi>C</mi><mo>/</mo><mi>G</mi><mo>≅</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"118 ","pages":"Pages 17-31"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topological types of actions on curves\",\"authors\":\"Diego Conti , Alessandro Ghigi , Roberto Pignatelli\",\"doi\":\"10.1016/j.jsc.2023.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe an algorithm that constructs a list of all topological types of holomorphic actions of a finite group on a compact Riemann surface <em>C</em> of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span> with <span><math><mi>C</mi><mo>/</mo><mi>G</mi><mo>≅</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"118 \",\"pages\":\"Pages 17-31\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We describe an algorithm that constructs a list of all topological types of holomorphic actions of a finite group on a compact Riemann surface C of genus with .
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.