{"title":"实张量的秩和对称秩的下界","authors":"Kexin Wang , Anna Seigal","doi":"10.1016/j.jsc.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>We lower bound the rank of a tensor by a linear combination of the ranks of three of its unfoldings, using Sylvester's rank inequality. In a similar way, we lower bound the symmetric rank by a linear combination of the symmetric ranks of three unfoldings. Lower bounds on the rank and symmetric rank of tensors are important for finding </span>counterexamples to Comon's conjecture. A real counterexample to Comon's conjecture is a tensor whose real rank and real symmetric rank differ. Previously, only one real counterexample was known, constructed in a paper of Shitov. We divide the construction into three steps. The first step involves linear spaces of binary tensors. The second step considers a linear space of larger decomposable tensors. The third step is to verify a conjecture that lower bounds the symmetric rank, on a tensor of interest. We use the construction to build an order six real tensor whose real rank and real symmetric rank differ.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bounds on the rank and symmetric rank of real tensors\",\"authors\":\"Kexin Wang , Anna Seigal\",\"doi\":\"10.1016/j.jsc.2023.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We lower bound the rank of a tensor by a linear combination of the ranks of three of its unfoldings, using Sylvester's rank inequality. In a similar way, we lower bound the symmetric rank by a linear combination of the symmetric ranks of three unfoldings. Lower bounds on the rank and symmetric rank of tensors are important for finding </span>counterexamples to Comon's conjecture. A real counterexample to Comon's conjecture is a tensor whose real rank and real symmetric rank differ. Previously, only one real counterexample was known, constructed in a paper of Shitov. We divide the construction into three steps. The first step involves linear spaces of binary tensors. The second step considers a linear space of larger decomposable tensors. The third step is to verify a conjecture that lower bounds the symmetric rank, on a tensor of interest. We use the construction to build an order six real tensor whose real rank and real symmetric rank differ.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lower bounds on the rank and symmetric rank of real tensors
We lower bound the rank of a tensor by a linear combination of the ranks of three of its unfoldings, using Sylvester's rank inequality. In a similar way, we lower bound the symmetric rank by a linear combination of the symmetric ranks of three unfoldings. Lower bounds on the rank and symmetric rank of tensors are important for finding counterexamples to Comon's conjecture. A real counterexample to Comon's conjecture is a tensor whose real rank and real symmetric rank differ. Previously, only one real counterexample was known, constructed in a paper of Shitov. We divide the construction into three steps. The first step involves linear spaces of binary tensors. The second step considers a linear space of larger decomposable tensors. The third step is to verify a conjecture that lower bounds the symmetric rank, on a tensor of interest. We use the construction to build an order six real tensor whose real rank and real symmetric rank differ.