余维四中半正则Gorenstein曲线的变形

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Patience Ablett , Stephen Coughlan
{"title":"余维四中半正则Gorenstein曲线的变形","authors":"Patience Ablett ,&nbsp;Stephen Coughlan","doi":"10.1016/j.jsc.2023.102251","DOIUrl":null,"url":null,"abstract":"<div><p>Recent work of Ablett (<span>2021</span>) and Kapustka, Kapustka, Ranestad, Schenck, Stillman and Yuan (<span>2021</span>) outlines a number of constructions for singular Gorenstein codimension four varieties. Earlier work of Coughlan, Gołȩbiowski, Kapustka and Kapustka (<span>2016</span>) details a series of nonsingular Gorenstein codimension four constructions with different Betti tables. In this paper we exhibit a number of flat deformations between Gorenstein codimension four varieties in the same Hilbert scheme, realising many of the singular varieties as specialisations of the earlier nonsingular varieties.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"121 ","pages":"Article 102251"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformations of half-canonical Gorenstein curves in codimension four\",\"authors\":\"Patience Ablett ,&nbsp;Stephen Coughlan\",\"doi\":\"10.1016/j.jsc.2023.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent work of Ablett (<span>2021</span>) and Kapustka, Kapustka, Ranestad, Schenck, Stillman and Yuan (<span>2021</span>) outlines a number of constructions for singular Gorenstein codimension four varieties. Earlier work of Coughlan, Gołȩbiowski, Kapustka and Kapustka (<span>2016</span>) details a series of nonsingular Gorenstein codimension four constructions with different Betti tables. In this paper we exhibit a number of flat deformations between Gorenstein codimension four varieties in the same Hilbert scheme, realising many of the singular varieties as specialisations of the earlier nonsingular varieties.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"121 \",\"pages\":\"Article 102251\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000652\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000652","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Ablett(2021)和Kapustka,Kapustka、Ranestad、Schenck、Stillman和Yuan(2021)最近的工作概述了奇异Gorenstein四维变体的许多构造。Coughlan、Gołȩbiowski、Kapustka和Kapustka(2016)的早期工作详细介绍了一系列具有不同Betti表的非奇异Gorenstein余维四结构。在本文中,我们在同一希尔伯特方案中展示了Gorenstein余维四个变种之间的许多平坦变形,将许多奇异变种实现为早期非奇异变种的专门化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations of half-canonical Gorenstein curves in codimension four

Recent work of Ablett (2021) and Kapustka, Kapustka, Ranestad, Schenck, Stillman and Yuan (2021) outlines a number of constructions for singular Gorenstein codimension four varieties. Earlier work of Coughlan, Gołȩbiowski, Kapustka and Kapustka (2016) details a series of nonsingular Gorenstein codimension four constructions with different Betti tables. In this paper we exhibit a number of flat deformations between Gorenstein codimension four varieties in the same Hilbert scheme, realising many of the singular varieties as specialisations of the earlier nonsingular varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信