斜多项式-稀疏矩阵乘法

Pub Date : 2023-07-03 DOI:10.1016/j.jsc.2023.102240
Qiao-Long Huang , Ke Ye , Xiao-Shan Gao
{"title":"斜多项式-稀疏矩阵乘法","authors":"Qiao-Long Huang ,&nbsp;Ke Ye ,&nbsp;Xiao-Shan Gao","doi":"10.1016/j.jsc.2023.102240","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the observation that <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> is isomorphic to a quotient skew polynomial ring, we propose a new deterministic algorithm for <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> matrix multiplication over <span><math><mi>Q</mi></math></span>, where <em>p</em> is a prime number. The algorithm has complexity <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>T</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a parameter determined by the skew-polynomial-sparsity of input matrices and <em>ω</em><span> is the asymptotic exponent of matrix multiplication<span>. Here a matrix is skew-polynomial-sparse if its corresponding skew polynomial is sparse. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity </span></span><span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>∼</mo></mrow></msup><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ν</mi></mrow></mfrac><mo>)</mo></math></span>, where <span><math><mi>t</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is the skew-polynomial-sparsity of the product and <em>ν</em><span> is the probability parameter. The main feature of the algorithms is the acceleration for matrix multiplication if the input matrices or their products are skew-polynomial-sparse.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skew-polynomial-sparse matrix multiplication\",\"authors\":\"Qiao-Long Huang ,&nbsp;Ke Ye ,&nbsp;Xiao-Shan Gao\",\"doi\":\"10.1016/j.jsc.2023.102240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the observation that <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> is isomorphic to a quotient skew polynomial ring, we propose a new deterministic algorithm for <span><math><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>×</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> matrix multiplication over <span><math><mi>Q</mi></math></span>, where <em>p</em> is a prime number. The algorithm has complexity <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>T</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is a parameter determined by the skew-polynomial-sparsity of input matrices and <em>ω</em><span> is the asymptotic exponent of matrix multiplication<span>. Here a matrix is skew-polynomial-sparse if its corresponding skew polynomial is sparse. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity </span></span><span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>∼</mo></mrow></msup><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>ω</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ν</mi></mrow></mfrac><mo>)</mo></math></span>, where <span><math><mi>t</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span> is the skew-polynomial-sparsity of the product and <em>ν</em><span> is the probability parameter. The main feature of the algorithms is the acceleration for matrix multiplication if the input matrices or their products are skew-polynomial-sparse.</span></p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在观察到Q(p−1)×(p−2)同构于商斜多项式环的基础上,我们提出了一种新的Q上(p−3)×(p−1)矩阵乘法的确定算法,其中p是素数。该算法的复杂度为O(Tω−2p2),其中T≤p−1是由输入矩阵的斜多项式稀疏性决定的参数,ω是矩阵乘法的渐近指数。这里,如果矩阵对应的偏斜多项式是稀疏的,则矩阵是偏斜多项式稀疏的。此外,通过引入随机性,我们还提出了一种复杂度为O~(tω−2p2+p2log)的概率算法⁡1Γ),其中t≤p−1是乘积的偏斜多项式稀疏性,Γ是概率参数。如果输入矩阵或其乘积是斜多项式稀疏的,则该算法的主要特征是矩阵乘法的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Skew-polynomial-sparse matrix multiplication

Based on the observation that Q(p1)×(p1) is isomorphic to a quotient skew polynomial ring, we propose a new deterministic algorithm for (p1)×(p1) matrix multiplication over Q, where p is a prime number. The algorithm has complexity O(Tω2p2), where Tp1 is a parameter determined by the skew-polynomial-sparsity of input matrices and ω is the asymptotic exponent of matrix multiplication. Here a matrix is skew-polynomial-sparse if its corresponding skew polynomial is sparse. Moreover, by introducing randomness, we also propose a probabilistic algorithm with complexity O(tω2p2+p2log1ν), where tp1 is the skew-polynomial-sparsity of the product and ν is the probability parameter. The main feature of the algorithms is the acceleration for matrix multiplication if the input matrices or their products are skew-polynomial-sparse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信