对合基理论中的递归结构

Pub Date : 2023-09-01 DOI:10.1016/j.jsc.2023.01.003
Amir Hashemi , Matthias Orth , Werner M. Seiler
{"title":"对合基理论中的递归结构","authors":"Amir Hashemi ,&nbsp;Matthias Orth ,&nbsp;Werner M. Seiler","doi":"10.1016/j.jsc.2023.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>We study characterisations of involutive bases using a recursion over the variables in the underlying polynomial ring and corresponding completion algorithms. Three key ingredients are (i) an old result by Janet recursively characterising Janet bases for which we provide a new and simpler proof, (ii) the Berkesch–Schreyer variant of Buchberger's algorithm and (iii) a tree representation of sets of terms also known as Janet trees. We start by extending Janet's result to a recursive criterion for minimal Janet bases leading to an algorithm to minimise any given Janet basis. We then extend Janet's result also to Janet-like bases as introduced by Gerdt and Blinkov. Next, we design a novel recursive completion algorithm for Janet bases. We study then the extension of these results to Pommaret bases. It yields a novel recursive characterisation of quasi-stability which we use for deterministically constructing “good” coordinates more efficiently than in previous works. A small modification leads to a novel deterministic algorithm for putting an ideal into Nœther position. Finally, we provide a general theory of involutive-like bases with special emphasis on Pommaret-like bases and study the syzygy theory of Janet-like and Pommaret-like bases.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive structures in involutive bases theory\",\"authors\":\"Amir Hashemi ,&nbsp;Matthias Orth ,&nbsp;Werner M. Seiler\",\"doi\":\"10.1016/j.jsc.2023.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study characterisations of involutive bases using a recursion over the variables in the underlying polynomial ring and corresponding completion algorithms. Three key ingredients are (i) an old result by Janet recursively characterising Janet bases for which we provide a new and simpler proof, (ii) the Berkesch–Schreyer variant of Buchberger's algorithm and (iii) a tree representation of sets of terms also known as Janet trees. We start by extending Janet's result to a recursive criterion for minimal Janet bases leading to an algorithm to minimise any given Janet basis. We then extend Janet's result also to Janet-like bases as introduced by Gerdt and Blinkov. Next, we design a novel recursive completion algorithm for Janet bases. We study then the extension of these results to Pommaret bases. It yields a novel recursive characterisation of quasi-stability which we use for deterministically constructing “good” coordinates more efficiently than in previous works. A small modification leads to a novel deterministic algorithm for putting an ideal into Nœther position. Finally, we provide a general theory of involutive-like bases with special emphasis on Pommaret-like bases and study the syzygy theory of Janet-like and Pommaret-like bases.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用对基础多项式环中的变量的递归和相应的补全算法来研究对合基的特征。三个关键成分是(i)Janet递归刻画Janet基的旧结果,我们为其提供了一个新的更简单的证明,(ii)Buchberger算法的Berkesch–Schreyer变体,以及(iii)术语集的树表示,也称为Janet树。我们首先将Janet的结果扩展到最小Janet基的递归标准,从而得出最小化任何给定Janet基。然后,我们将Janet的结果推广到Gerdt和Blinkov引入的类Janet基。接下来,我们为Janet基设计了一种新的递归完成算法。然后我们研究了这些结果对Pommaret基的推广。它产生了一种新的拟稳定性递归特征,我们使用它来确定地构造“好”坐标,比以前的工作更有效。一个小的修改导致了一种新的确定性算法,用于将理想放入Nœther位置。最后,我们提供了一个对合类基的一般理论,特别是Pommaret类基,并研究了Janet类和Pommalet类基的合理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Recursive structures in involutive bases theory

We study characterisations of involutive bases using a recursion over the variables in the underlying polynomial ring and corresponding completion algorithms. Three key ingredients are (i) an old result by Janet recursively characterising Janet bases for which we provide a new and simpler proof, (ii) the Berkesch–Schreyer variant of Buchberger's algorithm and (iii) a tree representation of sets of terms also known as Janet trees. We start by extending Janet's result to a recursive criterion for minimal Janet bases leading to an algorithm to minimise any given Janet basis. We then extend Janet's result also to Janet-like bases as introduced by Gerdt and Blinkov. Next, we design a novel recursive completion algorithm for Janet bases. We study then the extension of these results to Pommaret bases. It yields a novel recursive characterisation of quasi-stability which we use for deterministically constructing “good” coordinates more efficiently than in previous works. A small modification leads to a novel deterministic algorithm for putting an ideal into Nœther position. Finally, we provide a general theory of involutive-like bases with special emphasis on Pommaret-like bases and study the syzygy theory of Janet-like and Pommaret-like bases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信